Search results

1 – 3 of 3
Open Access
Article
Publication date: 21 June 2019

Yang Li, Zhixiang Xie, Yaochen Qin and Zhicheng Zheng

This paper aims to study the temporal and spatial variation of vegetation and the influence of climate change on vegetation coverage in the Yellow River basin, China. The…

1302

Abstract

Purpose

This paper aims to study the temporal and spatial variation of vegetation and the influence of climate change on vegetation coverage in the Yellow River basin, China. The current study aimed to evaluate the role of a series of government-led environmental control projects in restoring the ecological environment of the Yellow River basin.

Design/methodology/approach

This paper uses unary linear regression, Mann–Kendall and wavelet analyses to study the spatial–temporal variations of vegetation and the response to climate changes in the Yellow River, China.

Findings

The results showed that for the past 17 years, not only the mean annual increase rate of the Normalized Difference Vegetation Index (NDVI) was 0.0059/a, but the spatial heterogeneity also yields significant results. The vegetation growth in the southeastern region was significantly better than that in the northwestern region. The variation period of the NDVI in the study area significantly shortened, and the most obvious oscillation period was half a year, with two peaks in one year. In addition, there are positive and negative effects of human activities on the change of vegetation cover of the Loess Plateau. The project of transforming cultivated land to forest and grassland promotes the increase of vegetation cover of the Loess plateau. Unfortunately, the regional urbanization and industrialization proliferated, and the overloading of grazing, deforestation, over-reclamation, and the exploitation and development of the energy area in the grassland region led to the reduction of the NDVI. Fortunately, the positive effects outweigh the negative ones.

Originality/value

This paper provides a comprehensive insight to analysis of the vegetation change and the responses of vegetation to climate change, with special reference to make the planning policy of ecological restoration. This paper argues that ecological restoration should be strengthened in areas with annual precipitation less than 450 mm.

Details

International Journal of Climate Change Strategies and Management, vol. 11 no. 4
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 8 July 2020

Yang Li, Yaochen Qin, Liqun Ma and Ziwu Pan

The ecological environment of the Loess Plateau, China, is extremely fragile under the context of global warming. Over the past two decades, the vegetation of the Loess…

Abstract

Purpose

The ecological environment of the Loess Plateau, China, is extremely fragile under the context of global warming. Over the past two decades, the vegetation of the Loess Plateau has undergone great changes. This paper aims to clarify the response mechanisms of vegetation to climate change, to provide support for the restoration and environmental treatment of vegetation on the Loess Plateau.

Design/methodology/approach

The Savitsky–Golay (S-G) filtering algorithm was used to reconstruct time series of moderate resolution imaging spectroradiometer (MODIS) 13A2 data. Combined with trend analysis and partial correlation analysis, the influence of climate change on the phenology and enhanced vegetation index (EVI) during the growing season was described.

Findings

The S-G filtering algorithm is suitable for EVI reconstruction of the Loess Plateau. The date of start of growing season was found to gradually later along the Southeast–Northwest direction, whereas the date of the end of the growing season showed the opposite pattern and the length of the growing season gradually shortened. Vegetation EVI values decreased gradually from Southeast to Northwest. Vegetation changed significantly and showed clear differentiation according to different topographic factors. Vegetation correlated positively with precipitation from April to July and with temperature from August to November.

Originality/value

This study provides technical support for ecological environmental assessment, restoration of regional vegetation coverage and environmental governance of the Loess Plateau over the past two decades. It also provides theoretical support for the prediction model of vegetation phenology changes based on remote sensing data.

Details

International Journal of Climate Change Strategies and Management, vol. 12 no. 4
Type: Research Article
ISSN: 1756-8692

Keywords

Book part
Publication date: 18 July 2022

Yakub Kayode Saheed, Usman Ahmad Baba and Mustafa Ayobami Raji

Purpose: This chapter aims to examine machine learning (ML) models for predicting credit card fraud (CCF).Need for the study: With the advance of technology, the world is…

Abstract

Purpose: This chapter aims to examine machine learning (ML) models for predicting credit card fraud (CCF).

Need for the study: With the advance of technology, the world is increasingly relying on credit cards rather than cash in daily life. This creates a slew of new opportunities for fraudulent individuals to abuse these cards. As of December 2020, global card losses reached $28.65billion, up 2.9% from $27.85 billion in 2018, according to the Nilson 2019 research. To safeguard the safety of credit card users, the credit card issuer should include a service that protects customers from potential risks. CCF has become a severe threat as internet buying has grown. To this goal, various studies in the field of automatic and real-time fraud detection are required. Due to their advantageous properties, the most recent ones employ a variety of ML algorithms and techniques to construct a well-fitting model to detect fraudulent transactions. When it comes to recognising credit card risk is huge and high-dimensional data, feature selection (FS) is critical for improving classification accuracy and fraud detection.

Methodology/design/approach: The objectives of this chapter are to construct a new model for credit card fraud detection (CCFD) based on principal component analysis (PCA) for FS and using supervised ML techniques such as K-nearest neighbour (KNN), ridge classifier, gradient boosting, quadratic discriminant analysis, AdaBoost, and random forest for classification of fraudulent and legitimate transactions. When compared to earlier experiments, the suggested approach demonstrates a high capacity for detecting fraudulent transactions. To be more precise, our model’s resilience is constructed by integrating the power of PCA for determining the most useful predictive features. The experimental analysis was performed on German credit card and Taiwan credit card data sets.

Findings: The experimental findings revealed that the KNN achieved an accuracy of 96.29%, recall of 100%, and precision of 96.29%, which is the best performing model on the German data set. While the ridge classifier was the best performing model on Taiwan Credit data with an accuracy of 81.75%, recall of 34.89, and precision of 66.61%.

Practical implications: The poor performance of the models on the Taiwan data revealed that it is an imbalanced credit card data set. The comparison of our proposed models with state-of-the-art credit card ML models showed that our results were competitive.

1 – 3 of 3