Search results

1 – 3 of 3
Article
Publication date: 27 November 2018

Mubing Yu, Xiaodong Yu, Xuhang Zheng, Hang Qu, Tengfei Yuan and Daige Li

This paper aims to describe a theoretical and experimental research concerning influence of recess shape on comprehensive lubrication performance of high speed and heavy load…

Abstract

Purpose

This paper aims to describe a theoretical and experimental research concerning influence of recess shape on comprehensive lubrication performance of high speed and heavy load hydrostatic thrust bearing with a constant flow.

Design/methodology/approach

The lubrication performance of a hydrostatic thrust bearing with different recess shape under the working conditions of high speed and heavy load has been simulated by using computational fluid dynamics and finite volume method.

Findings

It is found that the comprehensive lubrication performance of a hydrostatic thrust bearing with circular recess is optimal. The results demonstrate that recess shape has a great influence on the lubrication performance of the hydrostatic thrust bearing.

Originality/value

The simulation results indicate that to get an improved performance from a hydrostatic thrust bearing with constant flow, a proper selection of the recess shape is essential.

Article
Publication date: 30 November 2018

Mubing Yu, Xiaodong Yu, Xuhang Zheng and Hui Jiang

The purpose of this paper is to study thermal-fluid-solid coupling deformation and friction failure mechanism of bearing friction pairs under the working conditions of high speed…

Abstract

Purpose

The purpose of this paper is to study thermal-fluid-solid coupling deformation and friction failure mechanism of bearing friction pairs under the working conditions of high speed and heavy load.

Design/methodology/approach

The deformation is simulated based on thermal-fluid-solid coupling method, its deformation distribution law is revealed and the relationships of deformation of friction pairs, rotational speed and bearing weight are obtained.

Findings

The results prove that the oil film temperature rises sharply, the lubricating oil viscosity decreases rapidly, the film thickness becomes thinner, the deformation increases, the whole deformation is uneven and the boundary lubrication or dry friction are caused with the increase in rotational speed and bearing load.

Originality/value

The conclusions provide theoretical method for deformation solution and friction failure mechanism of hydrostatic thrust bearing.

Article
Publication date: 10 August 2018

Xiaodong Yu, Xu Zuo, Chao Liu, Xuhang Zheng, Hang Qu and Tengfei Yuan

Hydrostatic thrust bearing is a key component of the vertical CNC machining equipment, and often results in friction failure under the working condition of high speed and heavy…

Abstract

Purpose

Hydrostatic thrust bearing is a key component of the vertical CNC machining equipment, and often results in friction failure under the working condition of high speed and heavy load. The lubricating oil film becomes thin or breaks because of high speed and heavy load and it affects the high precision and stable operation of the vertical CNC machining equipment; hence, it is an effective way of avoiding friction failure for achieving the oil film shape prediction

Design/methodology/approach

For the hydrostatic thrust bearing with double rectangular cavities, researchers solve the deformation of the friction pairs in hydrostatic bearing by using the computation of hydrodynamics, elasticity theory, finite element method and fluid-thermal-mechanical coupled method. The deformation includes heat deformation and elasticity deformation, the shape of gap oil film is got according to the deformation of the friction pairs in hydrostatic bearing, and gets the shape of gap oil film, and determines the influencing factors and laws of the oil film shape, and achieves the prediction of oil film shape, and ascertains the mechanism of friction failure. An experimental verification is carried out.

Findings

Results show that the deformation of the rotational workbench is upturned along its radial direction under the working condition of high speed and heavy load. However, the deformation of the base is downturned along its radial direction and the deformation law of the gap oil film along the radius direction is estimated; the outer diameter is close but the inner diameter is divergent wedge.

Originality/value

The conclusion can provide a theoretical basis for the oil film control of hydrostatic thrust bearing and improve the stability of vertical CNC machining equipment.

1 – 3 of 3