Search results

1 – 8 of 8
To view the access options for this content please click here
Article

Wang Jianqi, Cao Xibin and Sun Zhaowei

The measurement of geomagnetic field can provide a reliable and economical basis for attitude and orbit information of low earth orbiting satellite. Because the earth's…

Abstract

The measurement of geomagnetic field can provide a reliable and economical basis for attitude and orbit information of low earth orbiting satellite. Because the earth's magnetic field is a function of position, and its measurement on the orbit are fully observable, orbit estimation can be obtained using extend Kalman filter (EKF) algorithm. With the assistant of angle velocity information from gyro measurement, attitude estimation can also be obtained. At the same time, gyro drift rate estimation is a part of the filter output. Although orbit and attitude determination are independent of each other, the filter can give the orbit and attitude estimation at the same time. The results of the numerical test show that a signal EKF can estimate both orbit and attitude by using magnetometer and gyro measurement only. The accuracy, usually is sufficient for low earth orbiting satellites.

Details

Aircraft Engineering and Aerospace Technology, vol. 75 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article

Baolin Wu and Xibin Cao

This paper aims to address the problem of formation control for spacecraft formation in elliptic orbits by using local relative measurements.

Abstract

Purpose

This paper aims to address the problem of formation control for spacecraft formation in elliptic orbits by using local relative measurements.

Design/methodology/approach

A decentralized formation control law is proposed to solve the aforementioned problem. The control law for each spacecraft uses only its relative state with respect to the neighboring spacecraft it can sense. These relative states can be acquired by local relative measurements. The formation control problem is converted to n stabilization problems of a single spacecraft by using algebraic graph theories. The resulting relative motion model is described by a linear time-varying system with uncertain parameters. An optimal guaranteed cost control scheme is subsequently used to obtain the desired control performance.

Findings

Numerical simulations show the effectiveness of the proposed formation control law.

Practical implications

The proposed control law can be considered as an alternative to global positioning system-based relative navigation and control system for formation flying missions.

Originality/value

The proposed decentralized formation control architecture needs only local relative measurements. Fuel consumption is considered by using an optimal guaranteed cost control scheme.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article

Ru Fang, Shijie Zhang and Xibin Cao

Hill equations have definite limitation in the design of multiple spacecraft formation flying in eccentric orbits. To solve the problem, the design method of spacecraft…

Abstract

Purpose

Hill equations have definite limitation in the design of multiple spacecraft formation flying in eccentric orbits. To solve the problem, the design method of spacecraft formation flying in a circular reference orbit based on Hill equation can be generalized and applied to spacecraft formation flying in eccentric orbits.

Design/methodology/approach

In this paper, T‐H equation is expressed as the explicit function form of reference orbit true anomaly, and the state transition matrix of relative motion of spacecraft formation flying in eccentric orbits is derived. According to the requirement that relative dynamics equation of spacecraft formation flying in eccentric orbits has periodicity solution, the paper theoretically gives the initial condition needed by the long‐term close‐distance spacecraft formation flying including the relationship between relative position and relative velocity. Without perturbation the spacecraft formation, which satisfies the initial periodicity restriction, can keep long‐term close‐distance flying without the need of active control.

Findings

Based on the theoretical analysis, some numerical simulations are carried out. The results demonstrate that each spacecraft in eccentric orbits can run in a periodic motion surrounding the center spacecraft under some conditions. And spacecraft formation reconfiguration is implementing according to missions.

Originality/value

Combined with the periodicity restriction primary condition a new method about spacecraft formation reconfiguration is put forward. The method given by this paper can be applied to eccentric orbits of arbitrary eccentricity, and provides theoretical reference for orbit design of spacecraft formation flying in eccentric orbits.

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article

Shijie Zhang and Xibin Cao

In this paper, a coordinated attitude control law for a tracking and data relay satellite (TDRS) with mobile antennas is proposed. To track or point the target spacecraft…

Abstract

In this paper, a coordinated attitude control law for a tracking and data relay satellite (TDRS) with mobile antennas is proposed. To track or point the target spacecraft with median/law orbit, the large mobile antennas have to move in a wide range, the movement of such mobile antennas disturbing the satellite attitude. Conventionally, the main body of the satellite and the mobile antennas are controlled independently. The proposed controller first estimates the TDRS's angular momentum which the mobile antennas will produce, based on the momentum conservation equation, then adds the estimated angular momentum as a feedforward signal to the conventional control law. The proposed controller is demonstrated using mathematical simulation, the results of which coincide well with analytical results.

Details

Aircraft Engineering and Aerospace Technology, vol. 76 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article

Shijie Zhang and Xibin Cao

To give a closed‐form solution of the relative pose determination problem based on monocular vision during final approach phase of spacecraft Rendzvous and Docking.

Abstract

Purpose

To give a closed‐form solution of the relative pose determination problem based on monocular vision during final approach phase of spacecraft Rendzvous and Docking.

Design/methodology/approach

Based on the assumption of scaled orthographic projection, the model of perspective projection is simplified by representing the relative attitude using unit quaternion. Then a closed‐form solution is derived. Subsequently, this study correct the approximate solution to compensate the error caused by the assumption of scaled orthographic projection.

Findings

Extensive simulation studies were conducted for the validation of the proposed algorithm using Matlab™. When there are no relative attitudes between RVD spacecrafts, target distance for camera=2‐20 m. The simulation results show that the largest relative error of corrected relative position parameters is about 0.12 percent. When distance between RVD spacecrafts exceeds 5 m, the largest error of corrected relative attitude parameters are less than 0.3°. When the distance between spacecrafts are constant, the relative attitude parameters are changed, respectively, the simulition results show the largest relative error of relative position is 1 percent, and largest error of estimated relative attitude is 1.2°, when a relative attitude angle reaches 20°.

Originality/value

The proposed algorithm avoids the multiple results problem in determining the relative position and attitude parameters and the closed‐form solution is simple and effective, is more suitable for on‐board implementation.

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article

Zhaowei Sun, Yanping Cheng, Yunhai Geng and Xibin Cao

The HITSAT‐1 is the first small satellite developed by Harbin Institute of Technology (HIT) whose mission objective is to test several pivotal techniques. In the initial…

Abstract

The HITSAT‐1 is the first small satellite developed by Harbin Institute of Technology (HIT) whose mission objective is to test several pivotal techniques. In the initial orbit period, the satellite is likely to tumble as the result of separating from the rocket. How to capture it promptly with finite magnetic torque is an important problem. In this paper, considering the restrictive conditions of the magnetic field, the variable structure control theory is used to cope with the magnetic torque. Because of using the reaction wheels and magnetorquers as the control actuators, the combination control algorithm has been adopted in the initial orbit period. The results of the computer simulation indicated that the algorithm has excellent robustness and can be designed and realized easily.

Details

Aircraft Engineering and Aerospace Technology, vol. 72 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article

Jihe Wang, Xibin Cao and Jinxiu Zhang

The purpose of this paper is to propose a fuel‐optimal virtual centre selection method for formation flying maintenance in the J2 perturbed environment.

Abstract

Purpose

The purpose of this paper is to propose a fuel‐optimal virtual centre selection method for formation flying maintenance in the J2 perturbed environment.

Design/methodology/approach

Based on the relative orbital elements (ROE) theory, the J2 perturbed relative motions between different satellites in the formation are analyzed, and then the fuel‐optimal virtual centre selection issue for formation flying maintenance are parameterized in terms of ROE. In order to determine the optimal virtual centre, two theories are proposed in terms of ROE.

Findings

Numerical simulations demonstrate that the fuel‐optimal virtual centre selection method is valid, and the control of the ROE of each satellite with respect to a virtual optimal centre of the formation is more efficient regarding the fuel consumption than the control of all satellites with respect to a satellite belonging to the formation.

Research limitations/implications

The fuel‐optimal virtual centre selection method is valid for formation flying mission whose member satellite in circular or near circular orbit.

Practical implications

The fuel‐optimal virtual centre selection approach can be used to solve formation flying maintenance problem which involves multiple satellites in the formation.

Originality/value

The paper proposes a fuel‐optimal virtual centre selection method in terms of ROE, and shows that keeping the formation with respect the optimal virtual centre is more fuel efficient.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article

Zhao Yang, Tian Hao and Cao Xi‐bin

To provide the basis and rule of theory analysis for the design of transmission parameters of the buffer system of the space docking mechanism.

Abstract

Purpose

To provide the basis and rule of theory analysis for the design of transmission parameters of the buffer system of the space docking mechanism.

Design/methodology/approach

Setting up the dynamic model of the buffer system of the space docking mechanism by adopting virtual work theory, and analyzing the effects of the transmission parameters of the buffer system to the system dynamic characteristics on the basis of the decouple principle.

Findings

The buffer characteristics of the docking mechanism varying with the change of the transmission parameters of the buffer system, and the change of the buffer force characteristics of the translation degree of freedom are more prominent than that of the turning angle degree of freedom; the mechanics characteristics of the buffer system will approximately satisfy the decouple requirement by selecting the appropriate transmission parameters.

Research limitations/implications

Only consider the transmission parameters for the transmission elements in the buffer system dynamic model, without considering the mass and inertia parameters.

Practical implications

Provides valuable method of parameter design to design the transmission system of the space docking mechanism.

Originality/value

Putting forward up the method of approximation to solve the sub‐ diagonalize matrix of the stiff matrix and the damp matrix, and then determining some main transmission ratio of the system. This method is simple, practical for the system design.

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 8 of 8