Search results

1 – 10 of over 1000
Article
Publication date: 18 May 2020

Bing Hu, Jing Liu and Xiang Zhang

Prior marketing and hospitality studies have largely ignored the role of corporate social responsibility (CSR) in shaping frontline employees’ customer orientation. This…

1243

Abstract

Purpose

Prior marketing and hospitality studies have largely ignored the role of corporate social responsibility (CSR) in shaping frontline employees’ customer orientation. This study aims to investigate the impacts of employee perceived CSRs on customer orientation in hotel industry.

Design/methodology/approach

Through an onsite data collection from 642 frontline employees of 14 hotels in China, the moderated mediation model that links frontline employees’ perceptions of internal and external CSR to person-organization fit, work engagement and customer orientation were validated with the bootstrapping procedures.

Findings

The results reveal that a higher degree of perceived internal and external CSR leads to greater customer orientation through work engagement, and these indirect effects will be stronger with comparatively higher person-organization fit levels.

Practical implications

By clarifying the connection between perceived CSR initiatives and customer-oriented behaviors, this study offers inspiration for hospitality managers to devise, allocate and leverage CSR investments, strategies and practices.

Originality/value

To the best of the authors’ knowledge, this study is the first to verify a moderated mediation model that investigates the impacts of perceived CSRs (i.e. internal vs external) on customer orientation, which not only uncovers some neglected antecedents of customer orientation but also provides a more nuanced insight into perceived CSR-customer orientation linkages.

Details

International Journal of Contemporary Hospitality Management, vol. 32 no. 7
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 3 April 2019

Dibakor Boruah, Xiang Zhang and Matthew Doré

The purpose of this paper is to develop a simple analytical model for predicting the through-thickness distribution of residual stresses in a cold spray (CS…

Abstract

Purpose

The purpose of this paper is to develop a simple analytical model for predicting the through-thickness distribution of residual stresses in a cold spray (CS) deposit-substrate assembly.

Design/methodology/approach

Layer-by-layer build-up of residual stresses induced by both the peening dominant and thermal mismatch dominant CS processes, taking into account the force and moment equilibrium requirements. The proposed model has been validated with the neutron diffraction measurements, taken from the published literature for different combinations of deposit-substrate assemblies comprising Cu, Mg, Ti, Al and Al alloys.

Findings

Through a parametric study, the influence of geometrical variables (number of layers, substrate height and individual layer height) on the through-thickness residual stress distribution and magnitude are elucidated. Both the number of deposited layers and substrate height affect residual stress magnitude, whereas the individual layer height has little effect. A good agreement has been achieved between the experimentally measured stress distributions and predictions by the proposed model.

Originality/value

The proposed model provides a more thorough explanation of residual stress development mechanisms by the CS process along with mathematical representation. Comparing to existing analytical and finite element methods, it provides a quicker estimation of the residual stress distribution and magnitude. This paper provides comparisons and contrast of the two different residual stress mechanisms: the peening dominant and the thermal mismatch dominant. The proposed model allows parametric studies of geometric variables, and can potentially contribute to CS process optimisation aiming at residual stress control.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 25 April 2022

Xiang Zhang, Yujie Li, Menghan Li, Guorui Zhang and Xiaori Liu

This paper aims to understand the influence of cylinder liner temperature on friction power loss of piston skirts and the synergistic effect of cylinder liner temperature…

Abstract

Purpose

This paper aims to understand the influence of cylinder liner temperature on friction power loss of piston skirts and the synergistic effect of cylinder liner temperature on lubrication and heat transfer between piston skirt and cylinder liner.

Design/methodology/approach

A method to calculate the influence of cylinder liner temperature on piston skirt lubrication is proposed. The lubrication is calculated by considering the different temperature distribution of the cylinder liner and corresponding piston temperature calculated by a new multilayer thermal resistance model. This model uses the inner surface temperature of the cylinder liner as the starting point, and the starting temperature corresponding to different positions of the piston is calculated using the time integral average. Besides, the transient heat transfer of mixed lubrication is taken into account. Six temperature distribution schemes of cylinder liner are designed.

Findings

Six temperature distributions of cylinder liner are designed, and the maximum friction loss is reduced by 34.4% compared with the original engine. The increase in temperature in the second part of the cylinder liner will lead to an increase in friction power loss. The increase of temperature in the third part of the cylinder liner will lead to a decrease in friction power loss. The influence of temperature change in the third part of the cylinder liner on friction power loss is greater than that in the second part.

Originality/value

The influence of different temperature distribution of cylinder liner on the lubrication and friction of piston skirt cylinder liner connection was simulated.

Article
Publication date: 1 August 2019

Xin Ren, Fang Cheng Liu, Xiang Yu Zhang and Yi Min Xie

This paper aims to study the tensile performance, deformation characteristics, auxeticity and stability of different auxetic tubular structures generated by cutting method…

Abstract

Purpose

This paper aims to study the tensile performance, deformation characteristics, auxeticity and stability of different auxetic tubular structures generated by cutting method and pattern scale factor (PSF) method using validated finite element analysis.

Design/methodology/approach

Two types of auxetic tubular structures were designed by a coordinate transformation method and the PSF adjustment method, respectively. ABAQUS/explicit solver was used for the large deformation analysis and the displacement of key nodes was extracted to calculate Poisson’s ratio value and evaluate the deformation of tubular structures.

Findings

The random cut method was not suitable for designing auxetic tubular structures. Vertical and horizontal cut approach was suitable, but the change of the tubular diameter was lower than the tubular structures generated by the PSF adjustment method.

Research limitations/implications

Simple ways to generate auxetic tubular structure, which can be made into intelligent and foldable equipment, such as annuloplasty rings, angioplasty stents and oesophageal stents. By combined with shape memory polymer, various smart tubular materials and structures with various functions can be designed, especially in medical scaffold and other medical equipment fields.

Originality/value

The auxetic characteristic of tubular structure designed by using random cut method has been investigated for the first time. The outcome of this study would be very useful design tubular structures with better mechanical properties.

Details

Pigment & Resin Technology, vol. 50 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 January 2022

Yawen Wang and Weixian Xue

The purpose is to analyze and discuss the sustainable development (SD) and financing risk assessment (FRA) of resource-based industrial clusters under the Internet of…

Abstract

Purpose

The purpose is to analyze and discuss the sustainable development (SD) and financing risk assessment (FRA) of resource-based industrial clusters under the Internet of Things (IoT) economy and promote the application of Machine Learning methods and intelligent optimization algorithms in FRA.

Design/methodology/approach

This study used the Support Vector Machine (SVM) algorithm that is analyzed together with the Genetic Algorithm (GA) and Ant Colony Optimization (ACO) algorithm. First, Yulin City in Shaanxi Province is selected for case analysis. Then, resource-based industrial clusters are studied, and an SD early-warning model is implemented. Then, the financing Risk Assessment Index System is established from the perspective of construction-operation-transfer. Finally, the risk assessment results of Support Vector Regression (SVR) and ACO-based SVR (ACO-SVR) are analyzed.

Findings

The results show that the overall sustainability of resource-based industrial clusters and IoT industrial clusters is good in the Yulin City of Shaanxi Province, and the early warning model of GA-based SVR (GA-SVR) has been achieved good results. Yulin City shows an excellent SD momentum in the resource-based industrial cluster, but there are still some risks. Therefore, it is necessary to promote the industrial structure of SD and improve the stability of the resource-based industrial cluster for Yulin City.

Originality/value

The results can provide a direction for the research on the early warning and evaluation of the SD-oriented resource-based industrial clusters and the IoT industrial clusters, promoting the application of SVM technology in the engineering field.

Details

Journal of Enterprise Information Management, vol. 35 no. 4/5
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 1 November 2021

Ruipeng Tong, Lulu Wang, Lanxin Cao, Boling Zhang and Xiaoyi Yang

Psychosocial factors have received increasing attention regarding significantly influencing safety in the construction industry. This research attempts to comprehensively…

351

Abstract

Purpose

Psychosocial factors have received increasing attention regarding significantly influencing safety in the construction industry. This research attempts to comprehensively summarize psychosocial factors related to safety performance of construction workers. In the context of coronavirus disease 2019, some typical psychosocial factors are selected to further analyze their influence mechanism of safety performance.

Design/methodology/approach

First, a literature review process was conducted to identify and summarize relevant psychosocial factors. Then, considering the impact of the epidemic, hypotheses on the relationship between six selected psychosocial factors (i.e. work stress, role ambiguity, work–family conflict, autonomy, social support and interpersonal conflict) and safety performance were proposed, and a hypothetical model was developed based on job demands-resources theory. Finally, a meta-analysis was used to examine these hypotheses and the model.

Findings

The results showed these psychosocial factors indirectly influenced workers’ safety performance by impacting on their occupational psychology condition (i.e. burnout and engagement). Work stress, role ambiguity, work–family conflict and interpersonal conflict were negatively related to safety performance by promoting burnout and affecting engagement. Autonomy and social support were positively related to safety performance by improving work engagement and reducing burnout.

Originality/value

This research is the pioneer systematically describing the overall picture of psychosocial factors related to the safety performance of construction workers. Through deeply discussed the mechanism of psychosocial factors and safety performance, it could provide a reference for the theory and application of psychosocial factors in the field of construction safety management.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 21 December 2021

Yunpu Zhang, Gongguo Xu and Ganlin Shan

Continuous and stable tracking of the low-altitude maneuvering targets is usually difficult due to terrain occlusion and Doppler blind zone (DBZ). This paper aims to…

Abstract

Purpose

Continuous and stable tracking of the low-altitude maneuvering targets is usually difficult due to terrain occlusion and Doppler blind zone (DBZ). This paper aims to present a non-myopic scheduling method of multiple radar sensors for tracking the low-altitude maneuvering targets. In this scheduling problem, the best sensors are systematically selected to observe targets for getting the best tracking accuracy under maintaining the low intercepted probability of a multi-sensor system.

Design/methodology/approach

First, the sensor scheduling process is formulated within the partially observable Markov decision process framework. Second, the interacting multiple model algorithm and the cubature Kalman filter algorithm are combined to estimate the target state, and the DBZ information is applied to estimate the target state when the measurement information is missing. Then, an approximate method based on a cubature sampling strategy is put forward to calculate the future expected objective of the multi-step scheduling process. Furthermore, an improved quantum particle swarm optimization (QPSO) algorithm is presented to solve the sensor scheduling action quickly. Optimization problem, an improved QPSO algorithm is presented to solve the sensor scheduling action quickly.

Findings

Compared with the traditional scheduling methods, the proposed method can maintain higher target tracking accuracy with a low intercepted probability. And the proposed target state estimation method in DBZ has better tracking performance.

Originality/value

In this paper, DBZ, sensor intercepted probability and complex terrain environment are considered in sensor scheduling, which has good practical application in a complex environment.

Article
Publication date: 1 October 2002

Jinwu Xiang, Guocai Hu and Xiaogu Zhang

An equivalent linear damping model is developed for forward flight condition, with the flap/lag/pitch kinematics and nonlinear characteristics of hydraulic damper taken…

1168

Abstract

An equivalent linear damping model is developed for forward flight condition, with the flap/lag/pitch kinematics and nonlinear characteristics of hydraulic damper taken into account. Damper axial velocity is analyzed from the velocities of the damper‐to‐blade attachment point in time domain. For the case of blade lead‐lag oscillations without forced excitation and kinematics, the equivalent linear damping is calculated from transient response with energy balance method, Fourier series based moving block analysis and Hilbert transform based technology, respectively. Results indicate that equivalent linear damping decreases significantly with lead‐lag forced excitation and flap/lag/pitch kinematics, especially with the latter in flight condition.

Details

Aircraft Engineering and Aerospace Technology, vol. 74 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 18 April 2020

Pengyang Li, Qiang Chen, Qingyu Peng and Xiaodong He

This paper aims to study the synergistic effect of graphene sponge on the thermal properties and shape stability of composite phase change material (PCM).

Abstract

Purpose

This paper aims to study the synergistic effect of graphene sponge on the thermal properties and shape stability of composite phase change material (PCM).

Design/methodology/approach

Graphene oxide sponge is first prepared from an aqueous solution of graphene oxide by freeze-drying method. The oxidized graphene sponge is reduced by hydrazine hydrate. Finally, use vacuum impregnation method to introduce paraffin into graphene sponge to prepare composite PCM.

Findings

Graphene sponge is used to improve the shape stability of paraffin wax and improves the thermal conductivity and latent heat of the composite PCM. The thermal conductivity increases by 200 per cent and the composite PCM has excellent reliability in 100 melt-freezing cycles.

Research limitations/implications

A simple way for fabricating composite PCM with high thermal conductivity and latent heat which has the potential to be used as thermal storage materials without container encapsulation has been developed by using graphene sponge and paraffin.

Originality/value

The materials and preparation methods with special structure and properties in this paper provide a new idea for the research of PCM, which can be widely used in the fields of energy conversion and storage.

Details

Pigment & Resin Technology, vol. 50 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 July 2019

Xiang Chen and Xiong Zhang

The simulation of the fluid–solid interaction (FSI) problem is important for both academic studies and engineering applications. However, the numerical approach for…

Abstract

Purpose

The simulation of the fluid–solid interaction (FSI) problem is important for both academic studies and engineering applications. However, the numerical approach for simulating the FSI problems is a great challenge owing to the large discrepancy of material properties and inconsistent description of grid motion between the fluid and solid domains. The difficulties will be further increased if there are multiple materials in the fluid region. In these complicated applications, interface reconstruction, multi-material advection and FSI must be all taken into account. This paper aims to present an effective integrated work of multi-material arbitrary Lagrangian Eulerian (MMALE) method, finite element (FE) method and the continuum analogy method to simulate the complex FSI problems involving multi-material flow. The coupled method is used to simulate the three-dimensional CONT test and the blast-plate interaction. The numerical results show good agreement with the benchmark and the experiment data, which indicates that the presented method is effective for solving the complicated FSI problems.

Design/methodology/approach

MMALE and FE methods are used to simulate fluid and solid regions, respectively. The interfacial nodes of fluid and solid are required to be coincident in the whole simulation so the interacted force can be easily and accurately calculated. To this end, the continuum analogy method is used in the rezoning phase.

Findings

The coupled method is used to simulate the three-dimensional CONT test and the blast-plate interaction. The numerical results show good agreement with the benchmark and the experiment data, which indicates that the presented method is effective for solving the complicated FSI problems.

Originality/value

To the best of the authors’ knowledge, this is the first time that the ALE method, moment of fluid interface reconstruction method, continuum analogy method and the FE method are combined to solve complicated practical problems.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 1000