Search results

1 – 10 of 15
Article
Publication date: 6 April 2023

Yongxiong Li, Junying Hu and Xiankang Zhong

This study aims to shed light on the corrosion behavior of X80 steel when sulfate-reducing bacteria (SRB) and permeating hydrogen interact.

Abstract

Purpose

This study aims to shed light on the corrosion behavior of X80 steel when sulfate-reducing bacteria (SRB) and permeating hydrogen interact.

Design/methodology/approach

In this study, electrochemical tests were conducted between 25 and 55 °C, and the surface morphology of the specimen was observed using scanning electron microscopy and three-dimensional photos. The composition of the oxide film was characterized by X-ray photoelectron spectroscopy (XPS).

Findings

Under the condition of 6 MPa simulated natural gas (15% H2), the content of S-containing compounds (FeS and FeSO4) in the corrosion products on the surface of the specimen decreases from 60.8% to 54.4%. This finding indicates that hydrogen permeation inhibits the metabolic processes of SRB in this environment. By comparing the hydrogen-uncharged specimen, it was found that under the condition of 6 MPa simulated natural gas (15% H2) hydrogen charging, the uniform corrosion on the X80 surface was weakened, and the protection of the oxide film on the specimen surface in this environment was better than that without hydrogen charging.

Originality/value

To the best of the authors’ knowledge, most of these existing studies have focused on the effect of hydrogen on the mechanical properties of materials and very little is known about corrosion behavior in the hydrogen environment. In this study, a self-designed small gas phase hydrogen charging device was used to study the X80 surface corrosion behavior in the environment of the H2-doped natural gas pipeline.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 August 2023

Abdelkader Guillal and Noureddine Abdelbaki

The aim of this study is to assess the opportunity for the development of hydrocarbon transportation using high-strength steel (HSS) in pipeline construction in terms of cost…

Abstract

Purpose

The aim of this study is to assess the opportunity for the development of hydrocarbon transportation using high-strength steel (HSS) in pipeline construction in terms of cost savings and reliability.

Design/methodology/approach

Several optimizations of pipeline design and operations were performed to estimate the total life-cycle cost variation associated with different grades of high-strength steel. The generalized reduced gradient (GRG) method was used in an Excel table to determine optimal total life cycle each pipeline. Variables used in this optimization with respect to each steel grade were as follows: pipeline external diameter, wall thickness, number of compression stations and installed power in each compression station. The reliability of a pipeline with optimal cost was assessed to highlight the impact of steel grade on pipeline reliability.

Findings

The study showed that the cost reduction is strongly dependent on the adopted gas pipeline configuration. The number of compression stations and external diameter are the main factors influencing the pipeline total life cycle cost, while the steel price seems to have a minor effect, the reduction of the gas pipeline total life cycle does not exceed 5% even with a 50% difference in pipe steel prices between X70 and X100 steels. On the other side, for the same external diameter, X100 steel presents better pipeline reliability against carbonic corrosion compared to X70 steel.

Practical implications

The main contribution of this study is to provide a decision-support tool to help pipeline constructors enhance the profitability of natural gas transmission pipelines. The optimization method used is simple to use for design engineers during a feasibility study.

Originality/value

The present study presents one step to fill the gap concerning the question of balancing the trade-off between cost savings and structural reliability in high-strength steel pipelines during the early stages of feasibility studies. The optimal design and operations parameters ensuring cost savings on total life cycle costs are identified via an optimization method. The impact of selected optimal parameters on the long-term pipeline service life was estimated via a structural reliability analysis.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 December 2023

Yingying Li, Lanlan Liu, Jun Wang, Song Xu, Hui Su, Yi Xie and Tangqing Wu

The purpose of this paper is to study the corrosion behavior of Q235 steel in saturated acidic red and yellow soils.

Abstract

Purpose

The purpose of this paper is to study the corrosion behavior of Q235 steel in saturated acidic red and yellow soils.

Design/methodology/approach

The corrosion behavior of Q235 steel in saturated red and yellow soils was compared by weight-loss, SEM/EDS, 3D ultra-depth microscopy and electrochemical measurements.

Findings

Rp of the steel gradually increases and icorr gradually decreases in both the red and yellow soils with time. The Rp of the steel in the red soil is lower, but its icorr is higher than that in the yellow soil. The uniform corrosion rate, diameter and density of the corrosion pit on the steel surface in the red soil are greater than those in the yellow soil. Lower pH, higher contents of corrosive anions and high-valence Fe oxides in the red soil are responsible for its higher corrosion rates and local corrosion susceptibility.

Originality/value

This paper investigates the difference in corrosion behavior of carbon steel in saturated acidic red and yellow soils, which can help to understand the mechanism of soil corrosion.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 April 2024

Hang Jia, Zhiming Gao, Shixiong Wu, Jia Liang Liu and Wenbin Hu

This study aims to investigate the corrosion inhibitor effect of migrating corrosion inhibitor (MCI) on Q235 steel in high alkaline environment under cathodic polarization.

Abstract

Purpose

This study aims to investigate the corrosion inhibitor effect of migrating corrosion inhibitor (MCI) on Q235 steel in high alkaline environment under cathodic polarization.

Design/methodology/approach

This study investigated the electrochemical characteristics of Q235 steel with and without MCI by polarization curve and electrochemical impedance spectroscopy. Besides, the surface composition of Q235 steel under different environments was analyzed by X-ray photoelectron spectroscopy. In addition, the migration characteristic of MCI and the adsorption behavior of MCI under cathodic polarization were studied using Raman spectroscopy.

Findings

Diethanolamine (DEA) and N, N-dimethylethanolamine (DMEA) can inhibit the increase of Fe(II) in the oxide film of Q235 steel under cathodic polarization. The adsorption stability of DMEA film was higher under cathodic polarization potential, showing a higher corrosion inhibition ability. The corrosion inhibition mechanism of DEA and DMEA under cathodic polarization potential was proposed.

Originality/value

The MCI has a broad application prospect in the repair of damaged reinforced concrete due to its unique migratory characteristics. The interaction between MCIs, rebar and concrete with different compositions has been studied, but the passivation behavior of the steel interface in the presence of both the migrating electric field and corrosion inhibitors has been neglected. And it was investigated in this paper.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 April 2024

Dongyang Li, Guanghu Yao, Yuyuan Guan, Yaolei Han, Linya Zhao, Lining Xu and Lijie Qiao

In this paper, the authors aim to study the effect of hydrogen on the pitting corrosion behavior of Incoloy 825, a commonly used material for heat exchanger tubes in hydrogenated…

Abstract

Purpose

In this paper, the authors aim to study the effect of hydrogen on the pitting corrosion behavior of Incoloy 825, a commonly used material for heat exchanger tubes in hydrogenated heat exchangers.

Design/methodology/approach

The pitting initiation and propagation behaviors were investigated by electrochemical and chemical immersion experiments and observed and analyzed by scanning electron microscope and energy dispersive spectrometer methods.

Findings

The results show that hydrogen significantly affects the electrochemical behavior of Incoloy 825; the self-corrosion potential decreased from −197 mV before hydrogen charging to −263 mV, −270 mV and −657 mV after hydrogen charging, and the corrosion current density increased from 0.049 µA/cm2 before hydrogen charging to 2.490 µA/cm2, 2.560 µA/cm2 and 2.780 µA/cm2 after hydrogen charging. The pitting susceptibility of the material increases.

Originality/value

Hydrogen is enriched on the precipitate, and the pitting corrosion also initiates at that location. The synergistic effect of hydrogen and precipitate destroys the passive film on the metal surface and promotes pitting initiation.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 February 2024

Dongsheng Wang, Xiaohan Sun, Yingchang Jiang, Xueting Chang and Xin Yonglei

Stainless-clad bimetallic steels (SCBS) are widely investigated in some extremely environmental applications areas, such as polar sailing area and tropical oil and gas platforms…

Abstract

Purpose

Stainless-clad bimetallic steels (SCBS) are widely investigated in some extremely environmental applications areas, such as polar sailing area and tropical oil and gas platforms areas, because of their excellent anticorrosion performance and relatively lower production costs. However, the properties of SCBS, including the mechanical strength, weldability and the anticorrosion behavior, have a direct relation with the manufacturing process and can affect their practical applications. This paper aims to review the application and the properties requirements of SCBS in marine environments to promote the application of this new material in more fields.

Design/methodology/approach

In this paper, the manufacturing process, welding and corrosion-resistant properties of SCBS were introduced systematically by reviewing the related literatures, and some results of the authors’ research group were also introduced briefly.

Findings

Different preparation methods, such as rolling composite, casting rolling composite, explosive composite, laser cladding and plasma arc cladding, as well as the process parameters, including the vacuum degree, rolling temperature, rolling reduction ratio, volume ratios of liquid to solid, explosive ratio and the heat treatment, influenced a lot on the properties of the SCBS through changing the interface microstructures. Otherwise, the variations in rolling temperature, pass, reduction and the grain size of clad steel also brought the dissimilarities of the mechanical properties, microhardness, bonding strength and toughness. Another two new processes, clad teeming method and interlayer explosive welding, deserve more attention because of their excellent microstructure control ability. The superior corrosion resistance of SCBS can alleviate the corrosion problem in the marine environment and prolong the service life of the equipment, but the phenomenon of galvanic corrosion should be noted as much as possible. The high dilution rate, welding process specifications and heat treatment can weaken the intergranular corrosion resistance in the weld area.

Originality/value

This paper summarizes the application of SCBS in marine environments and provides an overview and reference for the research of stainless-clad bimetallic steel.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 February 2024

Akhil Khajuria, Anurag Misra and S. Shiva

An experimental investigation for developing structure-property correlations of hot-rolled E410 steels with different carbon contents, i.e. 0.04wt.%C and 0.17wt.%C metal active…

Abstract

Purpose

An experimental investigation for developing structure-property correlations of hot-rolled E410 steels with different carbon contents, i.e. 0.04wt.%C and 0.17wt.%C metal active gas (MAG) and cold metal transfer (CMT)-MAG weldments was undertaken.

Design/methodology/approach

Mechanical properties and microstructure of MAG and CMT-MAG weldments of two E410 steels with varying content of carbon were compared using standardized mechanical testing procedures, and conventional microscopy.

Findings

0.04wt.%C steel had strained ferritic and cementite sub-structures in blocky shape and large dislocation density, while 0.17wt.%C steel consisted of pearlite and polygonal ductile ferrite. This effected yield strength (YS), and microhardness being larger in 0.04wt.%C steel, %elongation being larger in 0.17wt.%C steel. Weldments of both E410 steels obtained with CMT-MAG performed better than MAG in terms of YS, ultimate tensile strength (UTS), %elongation, and toughness. It was due to low heat input of CMT-MAG that resulted in refinement of weld metal, and subzones of heat affected zone (HAZ).

Originality/value

A substantial improvement in YS (∼9%), %elongation (∼38%), and room temperature impact toughness (∼29%) of 0.04wt.%C E410 steel is achieved with CMT-MAG over MAG welding. Almost ∼10, ∼12.5, and ∼16% increment in YS, %elongation, and toughness of 0.17wt.%C E410 steel is observed with CMT-MAG. Relatively low heat input of CMT-MAG leads to development of fine Widmanstätten and acicular ferrite in weld metal and microstructural refinement in HAZ subzones with nearly similar characteristics of base metal.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 January 2024

Yan Gao, Qiubo Li, Wei Wu, Qiwei Wang, Yizhe Su, Junxi Zhang, Deyuan Lin and Xiaojian Xia

The purpose of this paper is to study the effect of current-carrying condition on the electrochemical process and atmospheric corrosion behavior of the commercial aluminum alloys.

Abstract

Purpose

The purpose of this paper is to study the effect of current-carrying condition on the electrochemical process and atmospheric corrosion behavior of the commercial aluminum alloys.

Design/methodology/approach

Potentiodynamic polarization tests were performed to study the electrochemical process of the aluminum alloys. Salt spray tests and weight loss tests were carried out to study the atmospheric corrosion behavior. The corrosion morphology of the alloys was observed, and the products were analyzed.

Findings

The corrosion process of four aluminum alloys was accelerated in the current-carrying condition. Moreover, the acceleration effect on A2024 and A7075 was much stronger than that on A1050 and A5052. The main factors would be the differences in microstructure and corrosion resistance between these alloys. As the carried current increased, the corrosion rate and corrosion current density of the aluminum alloys gradually increased, with the protection of the corrosion product film decreasing linearly.

Originality/value

This is a recent study on the corrosion behavior of conductors under current-carrying condition, which truly understands the corrosion status of power grid materials. Relevant results provide support for the corrosion protection and safe service of aluminum alloy in power systems.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 15 September 2023

Yang Liu, Qian Zhang, Jialing Wang, Yawei Shao, Zhengyi Xu, Yanqiu Wang and Junyi Wang

The purpose of this paper is to enhance the compatibility of titanium dioxide in epoxy resins and thus the corrosion resistance of the coatings.

Abstract

Purpose

The purpose of this paper is to enhance the compatibility of titanium dioxide in epoxy resins and thus the corrosion resistance of the coatings.

Design/methodology/approach

In this work, TiO2 was modified by the mechanochemistry method where mechanical energy was combined with thermal energy to complete the modification. The stability of modified TiO2 in epoxy was analyzed by sedimentation experiment. The modified TiO2-epoxy coating was prepared, and the corrosion resistance of the coating was analyzed by open circuit potential, electrochemical impedance spectroscopy and neutral salt spray test.

Findings

High-temperature mechanical modification can improve the compatibility of TiO2 in epoxy resin. At the same time, the modified TiO2-epoxy coating showed better corrosion resistance. Compared to the unmodified TiO2-epoxy coating, the coating improved the dry adhesion force by 61.7% and the adhesion drop by 33.3%. After 2,300 h of immersion in 3.5 Wt.% NaCl solution, the coating resistance of the modified TiO2 coating was enhanced by nearly two orders of magnitude compared to the unmodified coating.

Originality/value

The authors have grafted epoxy molecules onto TiO2 surfaces using a high-temperature mechanical force modification method. The compatibility of TiO2 with epoxy resin is enhanced, resulting in improved adhesion of the coating to the substrate and corrosion resistance of the coating.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 15 August 2023

Yongtao Zhao, Weili Li, Xiaoyang Xuan, Jianbang Gao, Jue Wang, Liang Dong, Dawei Zang, Mingjian Wang and Xiankang Zhong

This study aims to evaluate the protection performance of zinc as sacrificial anode for ABS A steel in the presence of H2S under different temperatures, pH and salinities.

Abstract

Purpose

This study aims to evaluate the protection performance of zinc as sacrificial anode for ABS A steel in the presence of H2S under different temperatures, pH and salinities.

Design/methodology/approach

In this paper, weight loss measurements and electrochemical measurements are used to evaluate the corrosion degree of zinc and ABS A steel.

Findings

Under the conditions involved in this work, it is shown that zinc is a nice sacrificial anode with the reason of its stable potential and excellent anode current efficiency according to the relevant standard. And it is also found that the hydrogen evolution does not occur on ABS A steel specimens. The potential difference between cathode and anode is suitable; thus, it can be concluded that each steel is well protected.

Originality/value

To the best of the authors’ knowledge, no other study has analyzed the protection mechanism and effect of zinc as sacrificial anode in H2S-containing environments under high temperature at present.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 15