Search results

1 – 10 of over 27000
Article
Publication date: 19 September 2016

Ziqiang Cui, Qi Wang, Qian Xue, Wenru Fan, Lingling Zhang, Zhang Cao, Benyuan Sun, Huaxiang Wang and Wuqiang Yang

Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low…

Abstract

Purpose

Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low cost, non-invasive and visualization features. There are two major difficulties in image reconstruction for ECT and ERT: the “soft-field”effect, and the ill-posedness of the inverse problem, which includes two problems: under-determined problem and the solution is not stable, i.e. is very sensitive to measurement errors and noise. This paper aims to summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide reference for further research and application.

Design/methodology/approach

In the past 10 years, various image reconstruction algorithms have been developed to deal with these problems, including in the field of industrial multi-phase flow measurement and biological medical diagnosis.

Findings

This paper reviews existing image reconstruction algorithms and the new algorithms proposed by the authors for electrical capacitance tomography and electrical resistance tomography in multi-phase flow measurement and biological medical diagnosis.

Originality/value

The authors systematically summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide valuable reference for practical applications.

Article
Publication date: 18 October 2011

Minghu Ha, Jiqiang Chen, Witold Pedrycz and Lu Sun

Bounds on the rate of convergence of learning processes based on random samples and probability are one of the essential components of statistical learning theory (SLT)…

Abstract

Purpose

Bounds on the rate of convergence of learning processes based on random samples and probability are one of the essential components of statistical learning theory (SLT). The constructive distribution‐independent bounds on generalization are the cornerstone of constructing support vector machines. Random sets and set‐valued probability are important extensions of random variables and probability, respectively. The paper aims to address these issues.

Design/methodology/approach

In this study, the bounds on the rate of convergence of learning processes based on random sets and set‐valued probability are discussed. First, the Hoeffding inequality is enhanced based on random sets, and then making use of the key theorem the non‐constructive distribution‐dependent bounds of learning machines based on random sets in set‐valued probability space are revisited. Second, some properties of random sets and set‐valued probability are discussed.

Findings

In the sequel, the concepts of the annealed entropy, the growth function, and VC dimension of a set of random sets are presented. Finally, the paper establishes the VC dimension theory of SLT based on random sets and set‐valued probability, and then develops the constructive distribution‐independent bounds on the rate of uniform convergence of learning processes. It shows that such bounds are important to the analysis of the generalization abilities of learning machines.

Originality/value

SLT is considered at present as one of the fundamental theories about small statistical learning.

Article
Publication date: 17 October 2016

Ruolong Qi, Weijia Zhou, Huijie Zhang, Wei Zhang and Guangxin Yang

The weld joint of large thin-wall metal parts which deforms in manufacturing and clamping processes is very difficult to manufacture for its shape is different from the…

Abstract

Purpose

The weld joint of large thin-wall metal parts which deforms in manufacturing and clamping processes is very difficult to manufacture for its shape is different from the initial model; thus, the space normals of the part surface are uncertain.

Design/methodology/approach

In this paper, an effective method is presented to calculate cutter location points and to estimate the space normals by measuring some sparse discrete points of weld joint. First, a contact-type probe fixed in the end of friction stir welding (FSW) robot is used to measure a series of discrete points on the weld joint. Then, a space curve can be got by fitting the series of points with a quintic spline. Second, a least square plane (LSP) of the measured points is obtained by the least square method. Then, normal vectors of the plane curve, which is the projection of the space curve on the LSP, are used to estimate the space normals of the weld joint curve. After path planning, a post-processing method combing with FSW craft is elaborated.

Findings

Simulation and real experiment demonstrate that the proposed strategy, which obtains cutter locations of welding and normals without measuring the entire surface, is feasible and effective for the FSW of large thin-walled complex surface parts.

Originality/value

This paper presents a novel method which makes it possible to accurately weld the large thin-wall complex surface part by the FSW robot. The proposed method might be applied to any multi-axes FSW robot similar to the robot studied in this paper.

Details

Industrial Robot: An International Journal, vol. 43 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 October 2017

Zimeng Wang, Fabrice Colin, Guigao Le and Junfeng Zhang

The purpose of this paper is to develop a counter-extrapolation approach for computational heat and mass transfer with the interfacial discontinuity considered at…

103

Abstract

Purpose

The purpose of this paper is to develop a counter-extrapolation approach for computational heat and mass transfer with the interfacial discontinuity considered at conjugate interfaces.

Design/methodology/approach

By applying finite-difference approximations for the interfacial gradients along the local normal direction, the conjugate system can be simplified to the Dirichlet boundary problems for individual domains. A suitable method for the Dirichlet boundary value condition can then be used. The lattice Boltzmann method has been used to demonstrate the method. The model has been carefully validated by comparing the simulation results and theoretical solutions for steady and unsteady systems with flat or circular interfaces. Furthermore, the cooling process of a hot cylinder in a cold flow, which involves unsteady flow and heat transfer across a curved interface, has been simulated as an example to illustrate the practical usefulness of this model.

Findings

Good agreement has been observed in comparisons of simulations and theoretical solutions. The convergence and stability of the method have also been examined and satisfactory results have been obtained. Results of the cylinder cooling process show that a surface insulation layer can effectively reduce the heat transfer process and slow down the cooling process.

Originality/value

This method possesses several technical advantages, including the simple and straightforward algorithm, and accurate representation of the interface geometry. The basic idea and algorithm of the counter-extrapolation procedure presented here can be readily extended to other lattice Boltzmann models and even other computational technologies for heat and mass transfer systems with interface discontinuity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 October 2021

Liu-Qing Li, Yi-Tian Gao, Xin Yu, Gao-Fu Deng and Cui-Cui Ding

This paper aims to study the Gramian solutions and solitonic interactions of a (2 + 1)-dimensional Broer–Kaup–Kupershmidt (BKK) system, which models the nonlinear and…

Abstract

Purpose

This paper aims to study the Gramian solutions and solitonic interactions of a (2 + 1)-dimensional Broer–Kaup–Kupershmidt (BKK) system, which models the nonlinear and dispersive long gravity waves traveling along two horizontal directions in the shallow water of uniform depth.

Design/methodology/approach

Pfaffian technique is used to construct the Gramian solutions of the (2 + 1)-dimensional BKK system. Asymptotic analysis is applied on the two-soliton solutions to study the interaction properties.

Findings

N-soliton solutions in the Gramian with a real function ζ(y) of the (2 + 1)-dimensional BKK system are constructed and proved, where N is a positive integer and y is the scaled space variable. Conditions of elastic and inelastic interactions between the two solitons are revealed asymptotically. For the three and four solitons, elastic, inelastic interactions and soliton resonances are discussed graphically. Effect of the wave numbers, initial phases and ζ(y) on the solitonic interactions is also studied.

Originality/value

Shallow water waves are studied for the applications in environmental engineering and hydraulic engineering. This paper studies the shallow water waves through the Gramian solutions of a (2 + 1)-dimensional BKK system and provides some phenomena that have not been studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 January 2019

Cheng-De Zheng, Ye Liu and Yan Xiao

The purpose of this paper is to develop a method for the existence, uniqueness and globally robust stability of the equilibrium point for Cohen–Grossberg neural networks…

Abstract

Purpose

The purpose of this paper is to develop a method for the existence, uniqueness and globally robust stability of the equilibrium point for Cohen–Grossberg neural networks with time-varying delays, continuous distributed delays and a kind of discontinuous activation functions.

Design/methodology/approach

Based on the Leray–Schauder alternative theorem and chain rule, by using a novel integral inequality dealing with monotone non-decreasing function, the authors obtain a delay-dependent sufficient condition with less conservativeness for robust stability of considered neural networks.

Findings

It turns out that the authors’ delay-dependent sufficient condition can be formed in terms of linear matrix inequalities conditions. Two examples show the effectiveness of the obtained results.

Originality/value

The novelty of the proposed approach lies in dealing with a new kind of discontinuous activation functions by using the Leray–Schauder alternative theorem, chain rule and a novel integral inequality on monotone non-decreasing function.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 12 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 5 August 2019

Xin Gu, Qing Zhang and Erdogan Madenci

This paper aims to review the existing bond-based peridynamic (PD) and state-based PD heat conduction models, and further propose a refined bond-based PD thermal…

Abstract

Purpose

This paper aims to review the existing bond-based peridynamic (PD) and state-based PD heat conduction models, and further propose a refined bond-based PD thermal conduction model by using the PD differential operator.

Design/methodology/approach

The general refined bond-based PD is established by replacing the local spatial derivatives in the classical heat conduction equations with their corresponding nonlocal integral forms obtained by the PD differential operator. This modeling approach is representative of the state-based PD models, whereas the resulting governing equations appear as the bond-based PD models.

Findings

The refined model can be reduced to the existing bond-based PD heat conduction models by specifying particular influence functions. Also, the refined model does not require any calibration procedure unlike the bond-based PD. A systematic explicit dynamic solver is introduced to validate 1 D, 2 D and 3 D heat conduction in domains with and without a crack subjected to a combination of Dirichlet, Neumann and convection boundary conditions. All of the PD predictions are in excellent agreement with the classical solutions and demonstrate the nonlocal feature and advantage of PD in dealing with heat conduction in discontinuous domains.

Originality/value

The existing PD heat conduction models are reviewed. A refined bond-based PD thermal conduction model by using PD differential operator is proposed and 3 D thermal conduction in intact or cracked structures is simulated.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 August 2018

Maogen Ge, Jing Hu, Mingzhou Liu and Yuan Zhang

As the last link of product remanufacturing, reassembly process is of great importance in increasing the utilization of remanufactured parts as well as decreasing the…

Abstract

Purpose

As the last link of product remanufacturing, reassembly process is of great importance in increasing the utilization of remanufactured parts as well as decreasing the production cost for remanufacturing enterprises. It is a common problem that a large amount of remanufactured part/reused part which past the dimension standard have been scrapped, which have increased the production cost of remanufacturing enterprises to a large extent. With the aim to improve the utilization of remanufacturing parts with qualified quality attributes but exceed dimension, the purpose of this paper is to put forward a reassembly classification selection method based on the Markov Chain.

Design/methodology/approach

To begin with, a classification standard of reassembly parts is proposed. With the thinking of traditional ABC analysis, a classification management method of reassembly parts for remanufactured engine is proposed. Then, a homogeneous Markov Chain of reassembly process is built after grading the matching dimension of reassembly parts with different variety. And the reassembly parts selection model is constructed based on the Markov Chain. Besides, the reassembly classification selection model and its flow chart are proposed by combining the researches above. Finally, the assembly process of remanufactured crankshaft is adopted as a representative example for illustrating the feasibility and the effectiveness of the method proposed.

Findings

The reassembly classification selection method based on the Markov Chain is an effective method in improving the utilization of remanufacturing parts/reused parts. The average utilization of remanufactured crankcase has increased from 35.7 to 80.1 per cent and the average utilization of reused crankcase has increased from 4.2 to 14 per cent as shown in the representative example.

Originality/value

The reassembly classification selection method based on the Markov Chain is of great importance in enhancing the economic benefit for remanufacturing enterprises by improving the utilization of remanufactured parts/reused parts.

Details

Assembly Automation, vol. 38 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 January 2009

X.Q. Zhang

widely‐used hypoelastic model for four well‐known objective stress rates under a four‐phase stress cycle associated with axial tension and/or torsion of thin‐walled…

Abstract

widely‐used hypoelastic model for four well‐known objective stress rates under a four‐phase stress cycle associated with axial tension and/or torsion of thin‐walled cylindrical tubes. Here, two kinds of models based upon the Cauchy stress and the Kirchhoff stress will be treated. The reduced systems of differential equations of these rate constitutive equations are derived and studied for Jaumann, Green‐ Naghdi, logarithmic and Truesdell stress rates, separately. Analytical solutions in some cases and numerical solutions in all cases are obtained using these reduced systems. Comparisons between the residual deformations are made for different cases. It may be seen that only the logarithmic stress rate results in no residual deformation. In particular, results indicate that Green‐Naghdi rate would generate unexpected residual deformation effect that is essentially different from that resulting from Jaumann rate. On the other hand, it is realized that this study accomplishes an alternative, direct proof for the nonintegrability problem of Truesdell’s hypoelastic rate equation with classical stress rates. This problem has been first treated successfully by Simo and Pister in 1984 using Bernstein’s integrability conditions. However, such treatment needs to cope with a coupled system of nonlinear partial differential equations in Cauchy stress. Here, a different idea is used. It is noted that every integrable hypoelastic equation is just an equivalent rate form of an elastic equation and hence should produce no residual deformations under every possible stress cycle. Accordingly, a hypoelastic model with a stress rate has to be non‐integrable, whenever a stress cycle can be found under which this model generates residual deformation. According to this idea of reductio ad absurdum, a well‐designed stress cycle is introduced and the corresponding residual deformations are calculated. Unlike the treatment of Bernstein’s integrability conditions, it may be a simple and straightforward matter to calculate the final deformations for a given stress cycle. This has been done in this study for several well‐known stress rates.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 April 2021

Shuliang Li, Ke Gong, Bo Zeng, Wenhao Zhou, Zhouyi Zhang, Aixing Li and Li Zhang

The purpose of this paper is to overcome the weakness of the traditional model, in which the grey action quantity is a real number and thus leads to a “unique solution”…

Abstract

Purpose

The purpose of this paper is to overcome the weakness of the traditional model, in which the grey action quantity is a real number and thus leads to a “unique solution” and to build the model with a trapezoidal possibility degree function.

Design/methodology/approach

Using the system input and output block diagram of the model, the interval grey action quantity is restored under the condition of insufficient system influencing factors, and the trapezoidal possibility degree function is formed. Based on that, a new model able to output non-unique solutions is constructed.

Findings

The model satisfies the non-unique solution principle of the grey theory under the condition of insufficient information. The model is compatible with the traditional model in structure and modelling results. The validity and practicability of the new model are verified by applying it in simulating the ecological environment water consumption in the Yangtze River basin.

Practical implications

In this study, the interval grey number form of grey action quantity is restored under the condition of insufficient system influencing factors, and the unique solution to the problem of the traditional model is solved. It is of great value in enriching the theoretical system of grey prediction models.

Social implications

Taking power consumption as an example, the accurate prediction of the future power consumption level is related to the utilization efficiency of the power infrastructure investment. If the prediction of the power consumption level is too low, it will lead to the insufficient construction of the power infrastructure and the frequent occurrence of “power shortage” in the power industry. If the prediction is too high, it will lead to excessive investment in the power infrastructure. As a result, the overall surplus of power supply will lead to relatively low operation efficiency. Therefore, building an appropriate model for the correct interval prediction is a better way to solve such problems. The model proposed in this study is an effective one to solve such problems.

Originality/value

A new grey prediction model with its interval grey action quantity based on the trapezoidal possibility degree function is proposed for the first time.

Details

Grey Systems: Theory and Application, vol. 12 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

1 – 10 of over 27000