Search results

1 – 10 of 299
Article
Publication date: 19 September 2022

Neeraj Yadav, Neda Sadeghi and Julian Kang

Tactile communication that relies on the human sense of touch replicated using vibration motors is increasingly being explored for seamless communication on construction jobsite…

Abstract

Purpose

Tactile communication that relies on the human sense of touch replicated using vibration motors is increasingly being explored for seamless communication on construction jobsite. However, the technological efficacy cannot secure the users’ acceptability of the tactile communication devices. This study aims to assess the factors affecting the wearability of such a portable tactile device based on the responses from practicing professionals.

Design/methodology/approach

The investigation adapted a three-step phenomenological interviewing approach to seek feedback from construction personnel in Texas, the USA, regarding the viability of wearable tactile communication. The interviewees expressed various opinions about the on-body placement upon exposure to a portable tactile feedback prototype developed for this study, which was used to derive inferences regarding the factors affecting its on-field acceptability.

Findings

All the participants of the round-table study (11 out of 11) considered tactile feedback as a viable mode of communication on construction jobsite. Seven professionals supported the integration of a tactile device with the hard hat, whereas the rest preferred tactile eyeglasses. Weatherability, rechargeability, traceability, safety and social receptivity were identified as the major factors affecting the on-body placement of the wearable tactile communication device.

Originality/value

This paper presents a roadmap to gain construction industry opinion on the factors that can affect the on-body placement of a wearable tactile communication device. The five aforementioned factors impacting tactile communication acceptability were used to evaluate 10 potential on-body placements. The findings have implications for research and development of wearable tactile devices and the subsequent acceptability of such a device on the jobsite.

Open Access
Article
Publication date: 28 June 2019

Lisa Klous, Wouter Bergmann Tiest, Pim van Dorst, Matthijs van der Linde and Hein Daanen

The purpose of this paper was to investigate whether small holes in an impermeable patch at the wrist improve perceived comfort during exercise.

Abstract

Purpose

The purpose of this paper was to investigate whether small holes in an impermeable patch at the wrist improve perceived comfort during exercise.

Design/methodology/approach

Nine male participants participated in this study. During the experiment, participants cycled 60 W in a hot room (35°C, 30 percent relative humidity) while an impermeable 20 cm2 patch was located on the ventral side of one wrist and at the same time a patch of identical shape with 5 mm diameter holes (17.7 percent uncovered) on the other wrist. The participants could not see the patches. Participants were forced to choose which patch they perceived as more comfortable. Chest and arm skin temperature, thermal comfort, thermal sensation and wetness perception were assessed.

Findings

Participants preferred 5 mm holes over no holes (p=0.017). Chest skin temperature (p=0.018) but not arm skin temperature correlates with this preference. Thermal comfort, thermal sensation and wetness perception did not differ significantly between patches. It is concluded that patches with 5 mm holes are preferred over impermeable patches during work in the heat in particular when the torso skin is warm.

Originality/value

The wrist is a preferred location for smart wearables. Generally, wrist bands are made of air-impermeable materials leading to sensation of wetness and discomfort. This study has shown that manufacturers should consider to make small holes in their wrist bands to optimize wearing comfort.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 August 2016

Hank Mao, Lawrence Peng, Zigui Liu, Yongkang Zhen and Murad Kurwa

The purpose of this paper is to find a practical and effective way to test wearing product lifetime with two SCARA robots.

Abstract

Purpose

The purpose of this paper is to find a practical and effective way to test wearing product lifetime with two SCARA robots.

Design/methodology/approach

The paper designs a mathematical model to simulate human motion, calculate the coordinate trajectory, then implement with two SCARA robots.

Findings

The two-robot testing platform for wrist band is an effective and precise simulation method and is feasible to deploy in mass production.

Originality/value

The paper introduces a way for apply robots in wearing product lifetime testing which is novel, practical and effective.

Details

Industrial Robot: An International Journal, vol. 43 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 4 August 2021

Ian L. Gordon, Seth Casden and Michael R. Hamblin

This study aims to test the effects of Celliant armbands on grip strength in subjects with chronic wrist and elbow pain. Celliant® is a functional textile fabric containing…

Abstract

Purpose

This study aims to test the effects of Celliant armbands on grip strength in subjects with chronic wrist and elbow pain. Celliant® is a functional textile fabric containing minerals that emit infrared radiation (IR) in response to body heat. IR-emitting fabrics have biological effects including the reduction of pain and inflammation and the stimulation of muscle function.

Design/methodology/approach

A randomized placebo-controlled trial recruited 80 subjects (40 per group) with a six-month history of chronic wrist or elbow pain (carpal tunnel syndrome, epicondylitis or arthritis) to wear an armband (real Celliant or placebo fabric) on the affected wrist or elbow for two weeks. Grip strength was measured by a dynamometer before and after the two-week study.

Findings

For the placebo group, the mean grip strength increased from 47.95 ± 25.14 (baseline) to 51.69 ± 27.35 (final), whereas for the Celliant group, it increased from 46.3 ± 22.02 to 54.1 ± 25.97. The mean per cent increase over the two weeks was +7.8% for placebo and +16.8% for Celliant (p = 0.0372). No adverse effects was observed.

Research limitations/implications

Limitations include the wide variation in grip strength in the participants at baseline measurement, which meant that only the percentage increase between baseline and final measurements showed a significant difference. Moreover, no subjective measurements of pain or objective neurophysiology testes was done.

Practical implications

Celliant armbands are easy to wear and have not been shown to produce any adverse effects. Therefore, there appears to be no barrier to prevent widespread uptake.

Social implications

IR-emitting textiles have been studied for their beneficial effects, both in patients diagnosed with various disorders and also in healthy volunteers for health and wellness purposes. Although there are many types of textile technology that might be used to produce IR-emitting fabrics, including coating of the fabric with a printed layer of ceramic material, incorporating discs of mineral into the garment, the authors feel that incorporating ceramic particles into the polymer fibers from which the fabric is woven is likely to be the most efficient way of achieving the goal.

Originality/value

Celliant armbands appear to be effective in painful upper limb inflammatory disorders, and further studies are warranted. The mechanism of action is not completely understood, but the hypothesis that the emitted IR radiation is absorbed by nanostructured intracellular water provides some theoretical justification.

Article
Publication date: 2 January 2020

Thomas Kundinger, Phani Krishna Yalavarthi, Andreas Riener, Philipp Wintersberger and Clemens Schartmüller

Drowsiness is a common cause of severe road accidents. Therefore, numerous drowsiness detection methods were developed and explored in recent years, especially concepts using…

Abstract

Purpose

Drowsiness is a common cause of severe road accidents. Therefore, numerous drowsiness detection methods were developed and explored in recent years, especially concepts using physiological measurements achieved promising results. Nevertheless, existing systems have some limitations that hinder their use in vehicles. To overcome these limitations, this paper aims to investigate the development of a low-cost, non-invasive drowsiness detection system, using physiological signals obtained from conventional wearable devices.

Design/methodology/approach

Two simulator studies, the first study in a low-level driving simulator (N = 10) to check feasibility and efficiency, and the second study in a high-fidelity driving simulator (N = 30) including two age groups, were conducted. An algorithm was developed to extract features from the heart rate signals and a data set was created by labelling these features according to the identified driver state in the simulator study. Using this data set, binary classifiers were trained and tested using various machine learning algorithms.

Findings

The trained classifiers reached a classification accuracy of 99.9%, which is similar to the results obtained by the studies which used intrusive electrodes to detect ECG. The results revealed that heart rate patterns are sensitive to the drivers’ age, i.e. models trained with data from one age group are not efficient in detecting drowsiness for another age group, suggesting to develop universal driver models with data from different age groups combined with individual driver models.

Originality/value

This work investigated the feasibility of driver drowsiness detection by solely using physiological data from wrist-worn wearable devices, such as smartwatches or fitness trackers that are readily available in the consumer market. It was found that such devices are reliable in drowsiness detection.

Article
Publication date: 17 April 2024

Rafiu King Raji, Jian Lin Han, Zixing Li and Lihua Gong

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart…

Abstract

Purpose

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart garments and other smart wearables such as wrist watches and wrist bands. The purpose of this study is to fill this knowledge gap by discussing issues regarding smart shoe sensing technologies, smart shoe sensor placements, factors that affect sensor placements and finally the areas of smart shoe applications.

Design/methodology/approach

Through a review of relevant literature, this study first and foremost attempts to explain what constitutes a smart shoe and subsequently discusses the current trends in smart shoe applications. Discussed in this study are relevant sensing technologies, sensor placement and areas of smart shoe applications.

Findings

This study outlined 13 important areas of smart shoe applications. It also uncovered that majority of smart shoe functionality are physical activity tracking, health rehabilitation and ambulation assistance for the blind. Also highlighted in this review are some of the bottlenecks of smart shoe development.

Originality/value

To the best of the authors’ knowledge, this is the first comprehensive review paper focused on smart shoe applications, and therefore serves as an apt reference for researchers within the field of smart footwear.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Book part
Publication date: 1 November 2007

Irina Farquhar and Alan Sorkin

This study proposes targeted modernization of the Department of Defense (DoD's) Joint Forces Ammunition Logistics information system by implementing the optimized innovative…

Abstract

This study proposes targeted modernization of the Department of Defense (DoD's) Joint Forces Ammunition Logistics information system by implementing the optimized innovative information technology open architecture design and integrating Radio Frequency Identification Device data technologies and real-time optimization and control mechanisms as the critical technology components of the solution. The innovative information technology, which pursues the focused logistics, will be deployed in 36 months at the estimated cost of $568 million in constant dollars. We estimate that the Systems, Applications, Products (SAP)-based enterprise integration solution that the Army currently pursues will cost another $1.5 billion through the year 2014; however, it is unlikely to deliver the intended technical capabilities.

Details

The Value of Innovation: Impact on Health, Life Quality, Safety, and Regulatory Research
Type: Book
ISBN: 978-1-84950-551-2

Book part
Publication date: 1 November 2007

Irina Farquhar, Michael Kane, Alan Sorkin and Kent H. Summers

This chapter proposes an optimized innovative information technology as a means for achieving operational functionalities of real-time portable electronic health records, system…

Abstract

This chapter proposes an optimized innovative information technology as a means for achieving operational functionalities of real-time portable electronic health records, system interoperability, longitudinal health-risks research cohort and surveillance of adverse events infrastructure, and clinical, genome regions – disease and interventional prevention infrastructure. In application to the Dod-VA (Department of Defense and Veteran's Administration) health information systems, the proposed modernization can be carried out as an “add-on” expansion (estimated at $288 million in constant dollars) or as a “stand-alone” innovative information technology system (estimated at $489.7 million), and either solution will prototype an infrastructure for nation-wide health information systems interoperability, portable real-time electronic health records (EHRs), adverse events surveillance, and interventional prevention based on targeted single nucleotide polymorphisms (SNPs) discovery.

Details

The Value of Innovation: Impact on Health, Life Quality, Safety, and Regulatory Research
Type: Book
ISBN: 978-1-84950-551-2

Article
Publication date: 24 October 2022

Hyojeong Lee and Yejin Lee

To provide guidelines for the development of textile electrode compression pants that collect reliable signals during surface electromyography (sEMG) measurements and maintain a…

178

Abstract

Purpose

To provide guidelines for the development of textile electrode compression pants that collect reliable signals during surface electromyography (sEMG) measurements and maintain a comfortable level of pressure.

Design/methodology/approach

To increase skin adhesion, 12 textile electrode bands for biceps brachii were prepared according to a combination of variables, namely, the type of the textile electrode, the pressure level and the presence or absence of an electrolyte. The dry textile electrode adopted herein was developed in terms of the size and material of the contact area, and a new electrode design was proposed. After examining the optimal design conditions by measuring the sEMGs during isometric exercise of the biceps brachii, prototype pants were designed based on the design variables that gave the most promising evaluation results. The completed prototype pants were verified through isometric thigh muscle exercises.

Findings

It was confirmed that the textile electrode was capable of EMG measurement with an excellent signal quality. Upon considering the comfort of wearing the device and the cost efficiency of dry electrodes, prototype pants that adopted a fit relative to a light clothing pressure (i.e. thigh: 1.3–1.9 kPa), and combined both silicon and silver thread embroidery with a wide contact area for stability, were designed and their sEMG measurements were confirmed.

Originality/value

In this study, wearable clothing based on textile electrodes was developed to ensure a comfortable fit from the wearer's perspective, and a design method was proposed for the development of low-cost SmartWear electrodes and circuits.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 July 2021

Wonil Lee, Ken-Yu Lin, Peter W. Johnson and Edmund Y.W. Seto

The identification of fatigue status and early intervention to mitigate fatigue can reduce the risk of workplace injuries. Off-the-shelf wearable sensors capable of assessing…

Abstract

Purpose

The identification of fatigue status and early intervention to mitigate fatigue can reduce the risk of workplace injuries. Off-the-shelf wearable sensors capable of assessing multiple parameters are available. However, using numerous variables in the fatigue prediction model can elicit data issues. This study aimed at identifying the most relevant variables for measuring occupational fatigue among entry-level construction workers by using common wearable sensor technologies, such as electrocardiogram and actigraphy sensors.

Design/methodology/approach

Twenty-two individuals were assigned different task workloads in repeated sessions. Stepwise logistic regression was used to identify the most parsimonious fatigue prediction model. Heart rate variability measurements, standard deviation of NN intervals and power in the low-frequency range (LF) were considered for fatigue prediction. Fast Fourier transform and autoregressive (AR) analysis were employed as frequency domain analysis methods.

Findings

The log-transformed LF obtained using AR analysis is preferred for daily fatigue management, whereas the standard deviation of normal-to-normal NN is useful in weekly fatigue management.

Research limitations/implications

This study was conducted with entry-level construction workers who are involved in manual material handling activities. The findings of this study are applicable to this group.

Originality/value

This is the first study to investigate all major measures obtainable through electrocardiogram and actigraphy among current mainstream wearables for monitoring occupational fatigue in the construction industry. It contributes knowledge on the use of wearable technology for managing occupational fatigue among entry-level construction workers engaged in material handling activities.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 299