Search results

11 – 20 of over 3000
Article
Publication date: 5 June 2017

Arunangshu Mukhopadhyay, Vinay Kumar Midha and Nemai Chandra Ray

This study aims to optimize the parametric combination of injected slub yarn to achieve least abrasive damage on fabrics produced from it.

Abstract

Purpose

This study aims to optimize the parametric combination of injected slub yarn to achieve least abrasive damage on fabrics produced from it.

Design/methodology/approach

Single base injected slub yarn structural parameters, vis-à-vis slub length, slub thickness and slub frequency, were varied during preparation of yarn samples under this research work. A total of 17 yarn samples were produced according to the Box and Bhenken design of the experiment. Subsequently knitted and woven (using injected slub yarns in the weft only) fabric samples were prepared from these yarns. Yarn and fabric samples were abraded with standard instruments to see the impact of yarn structural parameters on abrasive damage of fabric in terms of fabric mass loss and appearance deterioration. From the test results, empirical models relating to slub parameters and fabric abrasion behavior were developed through a backward elimination regression approach. Subsequently, a set of optimal parametric combinations was derived with multi-objective evolutionary algorithms by using MATLAB software. This was followed by ranking all optimal solutions through technique for order preference by similarity to idle solution (TOPSIS) score analysis.

Findings

The injected slub yarn’s structural parameters have a strong influence on the abrasive damage of knitted and woven fabric. It is seen that the best suitable parametric combination of slub parameters for achieving the least abrasive damage is not the same for knitted and woven fabric.

Practical implications

The spinner can explore this concept to find out the best suitable parametric combination during pattern making of injected slub yarn through MATLAB solution followed by TOPSIS score analysis based on their priority of criteria level to ensure better abrasion behavior of fabric produced.

Originality/value

Optimization of parametric combination of injected slub yarns will help to ensure production of fabric with most resistance to abrasion for specific applications. The studies showed that the optimal solution for woven and knitted fabrics is different. The result indicates that in the case of knitted fabric, comparatively lesser slub thickness is found to be suitable for getting better fabric abrasion resistance, whereas in the case of woven fabric, comparatively higher slub thickness is found suitable for the same.

Details

Research Journal of Textile and Apparel, vol. 21 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 19 March 2020

Xinjin Liu, Xinxin Yan, Xuzhong Su and Juan Song

With the popularization of electronic products, the electromagnetic radiation pollution has been the fourth largest pollution after water, air and noise pollution. Therefore…

Abstract

Purpose

With the popularization of electronic products, the electromagnetic radiation pollution has been the fourth largest pollution after water, air and noise pollution. Therefore, electromagnetic shielding property of textiles is attracting more attention. In this paper, the properties of electromagnetic shielding yarns and fabrics were studied.

Design/methodology/approach

Ten kinds of yarn, stainless steel short fiber and polyester blend yarn with three different blending ratios T/S 90/10, T/S 80/20 and T/S 70/30, stainless steel short fiber, polyester and cotton blend yarn with blending ratio C/T/S 35/35/30, core-spun yarn with one 30 um stainless steel filament C/T28tex/S(30 um), core-spun yarn with two 15 um stainless steel filaments (C/T28tex/S(15 um)/S(15 um)), twin-core-spun yarn with one 30 um stainless steel filament and one 50D spandex filament C/T28tex/S(30 um)/SP(50D), sirofil wrapped yarn with one 30 um stainless steel filament feeding from left S(30 um)+C/T28tex, sirofil wrapped yarn with one 30 um stainless steel filament feeding from right C/T28tex+S(30 um), sirofil wrapped yarn with two 15 um stainless steel filaments feeding from two sides S(15 um)+C/T28tex+ S(15 um), were spun. The qualities of spun yarns were measured. Then, for analyzing the electromagnetic shielding properties of fabrics made of different spun yarns, 20 kinds of fabrics were woven.

Findings

The tested results show that comparing to the T/S 80/20 blend yarn, the resistivity of composite yarns with the same ratio of the stainless steel filament is smaller. The possible reason is that comparing to the stainless steel short fiber, the conductivity of stainless steel filament is better because of the continuous distribution of stainless steel in the filament. Comparing with the core-spun yarn, the conductivity of the sirofil wrapped yarn is a little better. Comparing to the fabric woven by the blend yarn, the electromagnetic shielding of the fabric woven by the composite yarn is better, and comparing to the fabric woven by the core-spun yarn, the electromagnetic shielding of the fabric woven by the sirofil yarn is a little better. The possible reason is that the conduction network can be produced by the stainless steel filament wrapped on the staple fiber yarn surface in the fabric, and the electromagnetic wave can be transmitted in the network.

Originality/value

In this paper, the properties of electromagnetic shielding yarns and fabrics were studied. Ten kinds of yarn, including three stainless steel short fiber and polyester blend yarns, one stainless steel short fiber, polyester and cotton blend yarn, two core-spun yarns, one twin-core-spun yarn, three sirofil wrapped yarn, were spun. Then, for analyzing the electromagnetic shielding properties of fabrics made of different spun yarns, 20 kinds of fabrics were woven. The effects of fabric warp and weft densities, fabric structures, yarn kinds, yarn distributions in the fabric on electromagnetic shielding were analyzed.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 31 January 2024

Wiah Wardiningsih, Farhan Aqil Syauqi Pradanta, Ryan Rudy, Resty Mayseptheny Hernawati and Doni Sugiyana

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric

Abstract

Purpose

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric produced using these fibres.

Design/methodology/approach

The fibres were extracted via a decortication method. The acquired intrinsic qualities of the fibres were used to assess the feasibility of using them in textile applications. The thermal bonding approach was used for the development of the non-woven fabric, using a hot press machine with low-melt polyester fibre as a binder.

Findings

The mean length of Curcuma longa fibres was determined to be 52.73 cm, with a fineness value of 4.00 tex. The fibres exhibited an uneven cross-sectional morphology, characterized by a diverse range of oval-shaped lumens. The fibre exhibited a tenacity of 1.45 g/denier and an elongation value of 4.30%. The fibres possessed a moisture regain value of 11.30%. The experimental non-woven fabrics had consistent weight and thickness, while exhibiting different properties in terms of tensile strength and air permeability, with Fabric C having the highest tensile strength and the lowest air permeability value.

Originality/value

The features of Curcuma longa fibre, obtained with the decortication process, exhibited suitability for textile applications. Three experimental non-woven fabrics comprising different compositions of Curcuma longa fibre and low-melt polyester fibre were produced. The tensile strength and air permeability properties of these fabrics were influenced by the composition of the fibres.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 31 July 2018

Shariful Islam, Shaikh Md. Mominul Alam and Shilpi Akter

The purpose of this paper is to facilitate the production of cotton spandex woven fabric with some user-friendly properties like wearer comfort, super stretch and elasticity. The…

Abstract

Purpose

The purpose of this paper is to facilitate the production of cotton spandex woven fabric with some user-friendly properties like wearer comfort, super stretch and elasticity. The findings could contribute to ease spandex production and to optimize its property of elasticity. Stretch or a super stretch property is generally desirable, as it can increase the comfort level of those who wear it. In this experiment, the difficulties which were identified while manufacturing cotton spandex woven fabric resolved after identification.

Design/methodology/approach

In this experiment, three types of cotton spandex woven fabrics, with different composition and constructions, were used to find out their elastic properties. Temperature ranging from 160°C to 200°C with the machine speed of 20 to 26 MPM (meter per minute) was applied with an adjusted industrial setting with the facilities of a stenter machine to optimize the properties of cotton spandex woven fabric.

Findings

The findings establish that the temperature treatment closely compacted the elastic portions with cotton fibers, giving stability to the spandex yarn, which as a result, influenced cotton spandex woven fabric’s elastic properties, namely, stretch, growth and recovery. The consequences of temperature on cotton spandex yarns were assessed using a microscope, and the results were subsequently analyzed.

Research limitations/implications

Because of the poor facilities in testing laboratory, only few tests with microscopic evaluation were conducted to assess the elastic performances of cotton spandex woven fabric.

Practical implications

It is a practice-based research, and the findings could be beneficial to personnel in the textile industry, who are responsible for the manufacturing of cotton spandex woven fabric.

Social implications

This research could enhance the wearer’s satisfaction, with some comfort elastic properties, which can have a positive influence over spandex clothing industries.

Originality/value

This research establishes that heat setting had a progressive influence on the production of cotton spandex woven fabric and for the optimization of its elastic performances. This research opens a possible way for scholars to further study in this field.

Details

Research Journal of Textile and Apparel, vol. 22 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 9 May 2008

M.A. Nazarboland, X. Chen, J.W.S. Hearle, R. Lydon and M. Moss

This paper aims to discuss the development of a software tool UniverFilter™ which is capable of geometrical modelling of 3D woven fabrics, interfacing with computational fluid…

Abstract

Purpose

This paper aims to discuss the development of a software tool UniverFilter™ which is capable of geometrical modelling of 3D woven fabrics, interfacing with computational fluid dynamics tools to numerically determine the fluid (and more specifically liquid) flow path and simulating the filtration process by introducing particles of various shapes and sizes.

Design/methodology/approach

The method employed in creating the software tool is based on geometrical modelling of the single‐layer woven fabric with monofilament yarns, numerical analysis of the fluid‐flow problem, and mathematical modelling of the forces exerted on particles to accurately predict the settlement of such particles on the fabric. In the case of particle motion, a Lagrangian approach is used.

Findings

Creation of a software tool capable of simulation and modelling the filtration process through woven fabrics is the primary achievement. The effect of geometrical parameters of the woven fabric on fluid flow utilizing the results from fluid pressure and fluid velocity on the fabric show that the fluid flow is significantly influenced in the interstices and chamber downstream by the fabric. Fluid‐flow resistance and pressure loss are obtained from the results of fluid velocity and pressure. The results from the fluid pressure on the fabric could also be employed to more accurately predict how pore shapes and sizes are transformed.

Originality/value

Creation of a modelling tool for filtration through woven fabric media. This software is the foundation of establishing a standalone tool with the capability to design, test and improve fabric filter design for more efficient filtration properties.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 29 July 2019

Juan Song, Xuzhong Su and Xinjin Liu

With the improvement of living standards and acceleration of working pace, the shape retention property of textiles has attracted more attention. Yarn spinning is the first…

Abstract

Purpose

With the improvement of living standards and acceleration of working pace, the shape retention property of textiles has attracted more attention. Yarn spinning is the first fundamental process in making textiles and apparel, and the properties of yarn influence the performance of textiles directly. Filament/staple fiber composite yarn is a kind of yarn spun by filament and staple fiber, and comprehensive qualities of yarn can be improved. Therefore, the purpose of this paper is to study the shape retention properties of filament/staple fiber composite yarns and corresponding fabrics.

Design/methodology/approach

Four kinds of composite yarn, core-spun yarn with one 50D SPH filament feeding, sirofil wrapped yarn with one 50D SPH filament feeding from left, sirofil wrapped yarn with one 50D SPH filament feeding from right, sirofil wrapped yarn with two 25D SPH filaments feeding from two sides, were spun. The qualities of spun yarns were measured. Then, corresponding two kinds of twill fabrics were woven by core-spun yarn and sirofil wrapped yarn with two filaments, respectively. The handle parameters, crease recovery, appearance leveling after washing, dimensional change rate after washing, strength and elongation and tensile elasticity were tested by using corresponding test instruments.

Findings

The tested results of spun yarn qualities show that comparing with the core-spun yarn, the evenness of sirofil wrapped yarn is improved, the hairiness is reduced, and the breaking strength and elongation are increased. Comparing with sirofil wrapped yarn with one filament, the evenness of sirofil wrapped yarn with two filaments is improved. The measured results of fabrics properties show that under the same weaving process, comparing to the fabric woven by core-spun yarn, the dimension of fabric woven by sirofil wrapped yarn is small after desizing, and warp and weft density is large. The possible reason is that the shrinkage of the SPH filament outside the sirofil wrapped yarn happens after desizing, which also makes the dimensional change rate after washing of the corresponding fabric large, and crease recovery poor.

Originality/value

In the paper, for improving the shape retention properties of the pure cotton woven fabric, one kind of SPH filament was added to the woven fabric by spinning filament/staple fiber composite yarns. Four kinds of composite yarn, core-spun yarn with one 50D SPH filament, sirofil wrapped yarn with one 50D SPH filament feeding from the left side, sirofil wrapped yarn with one 50D SPH filament feeding from the right side, sirofil wrapped yarn with two 25D SPH filaments feeding from two sides, were spun. Two kinds of twill fabrics were weaving by core-spun yarn and sirofil wrapped yarn with two filaments, respectively.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 December 2018

Paniz Khosravani, Nazanin Ezazshahabi and Masoud Latifi

This paper aims to study the optical properties of woven fabrics.

148

Abstract

Purpose

This paper aims to study the optical properties of woven fabrics.

Design/methodology/approach

The current study was carried out to objectively evaluate the luster of a group of woven fabrics with different weave structures and weft densities, with the aid of a goniophotometer. The results obtained from the objective luster measurement were validated by a set of pair comparison subjective tests using Thurstone’s law of comparative judgment.

Findings

The proper correlation with the R2 value of more than 0.96, between subjective and objective tests, confirmed the reliability and accordance of objective results with the human perception of luster. Statistical analysis of the luster results clarified that the effect of fabric structural parameters such as weave structure and weft density are significant at the confidence range of 95 per cent. The highest luster index was achieved for the twill 3/1 weave structure and the lowest luster belonged to the plain pattern. In addition, an increase in the density of the fabric leads to better luster. Moreover, it was concluded that the surface roughness affects the luster. A rise in the roughness value of the woven fabric causes reduction in its luster property.

Originality/value

Optical properties of woven fabrics, which are mainly attributed through the measurement of luster, are important for qualifying the aesthetic characteristics of the fabrics with various weave structures. Bearing in mind the influence of fabric surface properties on the aesthetic features of cloths, obtaining information in this field is a guide for selecting the suitable fabric for various end uses.

Details

Research Journal of Textile and Apparel, vol. 23 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3540

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2001

George Stylios

Discusses the 6th ITCRR, its breadth of textile and clothing research activity, plus the encouragement given to workers in this field and its related areas. States that, within…

1078

Abstract

Discusses the 6th ITCRR, its breadth of textile and clothing research activity, plus the encouragement given to workers in this field and its related areas. States that, within the newer research areas under the microscope of the community involved, technical textiles focuses on new, ‘smart’ garments and the initiatives in this field in both the UK and the international community at large. Covers this subject at length.

Details

International Journal of Clothing Science and Technology, vol. 13 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 February 2022

Kura Alemayehu Beyene

Modeling helps to determine how structural parameters of fabric affect the surface of a fabric and also identify the way they influence fabric properties. Moreover, it helps to…

Abstract

Purpose

Modeling helps to determine how structural parameters of fabric affect the surface of a fabric and also identify the way they influence fabric properties. Moreover, it helps to estimate and evaluate without the complexity and time-consuming experimental procedures. The purpose of this study is to develop and select the best regression model equations for the prediction and evaluation of surface roughness of plain-woven fabrics.

Design/methodology/approach

In this study, a linear and quadratic regression model was developed for the prediction and evaluation of surface roughness of plain-woven fabrics, and the capability in accuracy and reliability of the two-model equation was determined by the root mean square error (RMSE). The Design-Expert AE11 software was used for developing the two model equations and analysis of variance “ANOVA.” The count and density were used for developing linear model equation one “SMD1” as well as for quadratic model equation two “SMD2.”

Findings

From results and findings, the effects of count and density and their interactions on the roughness of plain-woven fabric were found statistically significant for both linear and quadratic models at a confidence interval of 95%. The count has a positive correlation with surface roughness, while density has a negative correlation. The correlations revealed that models were strongly correlated at a confidence interval of 95% with adjusted R² of 0.8483 and R² of 0.9079, respectively. The RMSE values of the quadratic model equation and linear model equation were 0.1596 and 0.0747, respectively.

Originality/value

Thus, the quadratic model equation has better capability accuracy and reliability in predictions and evaluations of surface roughness than a linear model. These models can be used to select a suitable fabric for various end applications, and it was also used for tests and predicts surface roughness of plain-woven fabrics. The regression model helps to reduce the gap between the subjective and objective surface roughness measurement methods.

Details

Research Journal of Textile and Apparel, vol. 27 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

11 – 20 of over 3000