Search results

1 – 10 of 203
Article
Publication date: 17 February 2022

Muhammad Umair, Muhammad Usman Javaid, Yasir Nawab, Madeha Jabbar, Shagufta Riaz, Hafiz Affan Abid and Khubab Shaker

This paper aims to investigate the influence of picking sequence, weave design and weft yarn material on the thermal conductivity of the woven fabrics.

Abstract

Purpose

This paper aims to investigate the influence of picking sequence, weave design and weft yarn material on the thermal conductivity of the woven fabrics.

Design/methodology/approach

This work includes the development of 36 woven samples with two weave designs (1/1 plain and 3/1 twill), three picking sequences (single, double and three pick insertion) and six different weft yarn materials (cotton, polyester having 48 filaments, polyester with 144 filaments, spun coolmax having Lycra in core and coolmax in sheath, filament coolmax and polypropylene). The thermal conductivity was measured using ALAMBETA tester.

Findings

The results showed that weft yarn material, weave design and picking sequence have a meaningful impact on the thermal conductivity of woven fabric. The value of thermal conductivity was lowest for the fabrics with three pick insertion and 3/1 twill weave in all weft yarn materials.

Research limitations/implications

Plain woven fabric with single pick insertion is feasible for summer wear to enhance the comfort of wearer. By changing the warp yarn grouping and material, improved thermal conductivity/resistance can also be achieved.

Originality/value

The authors have studied the combined effect of different weft yarn materials with different picking sequences and different weave designs on thermal conductivity of the woven fabrics.

Details

Research Journal of Textile and Apparel, vol. 27 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 18 February 2022

Muhammad Umar Nazir, Muhammad Usman Javaid, Khubab Shaker, Yasir Nawab, Tanveer Hussain and Muhammad Umair

This paper aims to develop bilayer woven fabrics with different picking sequences with enhanced comfort without any change in the constituent materials.

Abstract

Purpose

This paper aims to develop bilayer woven fabrics with different picking sequences with enhanced comfort without any change in the constituent materials.

Design/methodology/approach

Six bilayer woven fabrics were produced on Dobby loom with 3/1 twill weave using micro-polyester yarn. Three different picking sequences, i.e. single pick insertion (SPI), double pick insertion (DPI) and three pick insertion (3PI), were used in both face and back layers. The effect of picking sequence on air permeability (AP), volume porosity, thermal resistance and overall moisture management capability (OMMC) of the samples were analyzed.

Findings

The results showed that 3PI–3PI picking sequence gives the highest OMMC, AP and thermal resistance in bilayer woven fabrics and the least results exhibited by SPI–SPI picking sequence.

Research limitations/implications

This research uses a bilayer woven system that develops channels and trapes the air causing higher thermal resistance; therefore, applicable for winter sports clothing rather than for summer wear. Developed bilayer woven fabrics can be used in winter sportswear to improve the comfort of the wearer and reduce fatigue during activity.

Originality/value

Authors have developed bilayer fabrics by changing the picking sequences, i.e. SPI, DPI and 3PI of weft yarns in both layers and compared their thermo-physiological comfort properties.

Details

Research Journal of Textile and Apparel, vol. 27 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 31 January 2024

Wiah Wardiningsih, Farhan Aqil Syauqi Pradanta, Ryan Rudy, Resty Mayseptheny Hernawati and Doni Sugiyana

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric…

Abstract

Purpose

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric produced using these fibres.

Design/methodology/approach

The fibres were extracted via a decortication method. The acquired intrinsic qualities of the fibres were used to assess the feasibility of using them in textile applications. The thermal bonding approach was used for the development of the non-woven fabric, using a hot press machine with low-melt polyester fibre as a binder.

Findings

The mean length of Curcuma longa fibres was determined to be 52.73 cm, with a fineness value of 4.00 tex. The fibres exhibited an uneven cross-sectional morphology, characterized by a diverse range of oval-shaped lumens. The fibre exhibited a tenacity of 1.45 g/denier and an elongation value of 4.30%. The fibres possessed a moisture regain value of 11.30%. The experimental non-woven fabrics had consistent weight and thickness, while exhibiting different properties in terms of tensile strength and air permeability, with Fabric C having the highest tensile strength and the lowest air permeability value.

Originality/value

The features of Curcuma longa fibre, obtained with the decortication process, exhibited suitability for textile applications. Three experimental non-woven fabrics comprising different compositions of Curcuma longa fibre and low-melt polyester fibre were produced. The tensile strength and air permeability properties of these fabrics were influenced by the composition of the fibres.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 21 September 2023

Yunchu Yang, Hengyu Wang, Hangyu Yan, Yunfeng Ni and Jinyu Li

The heat transfer properties play significant roles in the thermal comfort of the clothing products. The purpose of this paper is to find the relationship between heat transfer…

Abstract

Purpose

The heat transfer properties play significant roles in the thermal comfort of the clothing products. The purpose of this paper is to find the relationship between heat transfer properties and fabrics' structure, yarn properties and predict the effective thermal conductivity of single layer woven fabrics by a parametric mathematical model.

Design/methodology/approach

First, the weave unit was divided into four types of element regions, including yarn overlap regions, yarn crossing regions, yarn floating regions and pore regions. Second, the number and area proportion of each region were calculated respectively. Some formulas were created to calculate the effective thermal conductivity of each element region based on serial model, parallel model or series–parallel mixing model. Finally, according to the number and area proportion of each region in weave unit, the formulas were established to calculate the fabric overall effective thermal conductivity in thickness direction based on the parallel models.

Findings

The influences of yarn spacing, yarn width, fabric thickness, the compressing coefficients of air layers and weave type on the effective thermal conductivity were further discussed respectively. In this model, the relationships between the effective thermal conductivity and each parameter are some polynomial fitting curves with different orders. Weave type affects the change of effective thermal conductivity mainly through the numbers of different elements and their area ratios.

Originality/value

In this model, the formulas were created respectively to calculate the effective thermal conductivity of each element region and whole weave unit. The serial–parallel mixing characteristics of yarn and surrounding air are considered, as well as the compression coefficients of air layers. The results of this study can be further applied to the optimal design of mixture fabrics with different warp and filling yarn densities or different yarn thermal properties.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 January 2024

Amanpreet Kaur Kharbanda, Kamal Raj Dasarathan, S.K. Sinha, T. Senthil Kumar and B. Senthil Kumar

Through this study, four different types of woven fabric structures were created by using cotton/banana blends with a 70:30 ratio by varying the weaving specifications. This study…

36

Abstract

Purpose

Through this study, four different types of woven fabric structures were created by using cotton/banana blends with a 70:30 ratio by varying the weaving specifications. This study aims to investigate the comfort and mechanical properties of these woven materials.

Design/methodology/approach

Taguchi L16 experimental design (5 factors and 4 levels) with response surface methodology tool was used to optimize mechanical and comfort characteristics. The yarn samples used in this study are cotton/banana with a blend ratio of 70:30. Fabric type (A), grams per square metre (GSM; B), yarn count (C), fabric thickness (D) and cloth cover factor (E) are the chosen process characteristics.

Findings

The highest tensile strength and tearing strength of the cotton/banana blended fabric samples were obtained as 326.3 N and 90.3 k.gf/cm, respectively. Similarly, the highest thermal conductivity and overall moisture management capacity values were found to be 0.6628 and 3.06 W/mK X10−4, respectively. The optimized process parameters for obtaining maximum mechanical properties were using canvas fabric structure, 182 GSM, 36s Ne yarn count, 0.48 mm fabric thickness and 23.5 cloth cover factor. Similarly, the optimized process parameters for obtaining maximum comfort properties were achieved using a twill fabric structure, 182 GSM, 32s Ne yarn count, 0.4 mm fabric thickness and 23 cloth cover factor.

Originality/value

In contrast to synthetic fabrics, banana fibre and its blended materials are significant ecological solutions for apparel and functional clothing. Products made from banana fibre are a sustainable and green alternative to conventional fabrics. Banana fibre obtained from the pseudostem of the plant has an appearance similar to ramie and bamboo fibres. Numerous studies showed that banana fibre could absorb significant moisture and be spun into yarn through ring and rotor spinning technology. On the other hand, this fibre can be easily combined with cotton, jute, wool and synthetic fibre. The present utilization of pseudostem of banana plant fibre is very minimal. This type of research improves the usability of bananas their blended fabrics as apparel and functional wear.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 9 June 2022

Xiaoyan Wang, Jiaxin Zhang, Yang Jiang, Jinmei Du, Dagang Miao and Changhai Xu

This paper aims to determine the most practically applicable color-difference formula for yarn-dyed fabrics woven from warp and weft yarns in different color depths and to…

Abstract

Purpose

This paper aims to determine the most practically applicable color-difference formula for yarn-dyed fabrics woven from warp and weft yarns in different color depths and to establish color-difference tolerance for perceptibility by evaluating yarn-dyed fabrics visually and instrumentally.

Design/methodology/approach

A total of 108 sample pairs were evaluated by a panel of 13 observers with perceptibility method under three typical light sources (A, D65 and cool white fluorescent). The data sets were statistically analyzed by the homogeneity of variance test (F-test), analysis of variance, standardized residual sum of squares and performance factor/3.

Findings

Light sources had a slight influence on the visual assessments of yarn-dyed fabrics. Among the eight color-difference formulae for measurements of yarn-dyed fabrics, CIEDE2000(2:1:1) outperformed all other tested formulae, and the color tolerance for the perceptibility of CIEDE2000(2:1:1) was 0.62. When the homochromy index (K) of warp and weft yarns of yarn-dyed fabric was lower than 1.25, the color difference based on ΔE*00(2:1:1) between the two samples was acceptable in terms of the color tolerance for perceptibility (i.e. 0.62).

Practical implications

The warp and weft yarns in different color depths could be woven in fabric with a relatively uniform color appearance.

Originality/value

This study could contribute to cost savings by reusing disqualified dyed yarns during the weaving manufacturing process.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 December 2023

Khaled Mohamed Seddik and Marwa Atif Ali

Nowadays, textiles play a striking role in various medical applications. Compression bandages are the most essential medical fabrics that help treat venous flow and edema. This…

Abstract

Purpose

Nowadays, textiles play a striking role in various medical applications. Compression bandages are the most essential medical fabrics that help treat venous flow and edema. This study aims to investigate the characteristics of different woven compressive bandage structures produced using compact cotton and cotton/lycra.

Design/methodology/approach

Four samples were weaved by matt-plain2/2, twill2/2, stripe-stain4 and mock-leno structures. Several properties were tested that related to structural performance. Tensile strength, elastic and sub-bandage pressure are considered the main functional properties. Three different analysis tools were performed: chart-diagram, one-factor ANOVA and radar chart area.

Findings

The woven structures critically affected the performance of woven compression bandage samples as well as their classifications.

Originality/value

The woven structures critically affected the performance of woven compression bandage samples as well as their classifications.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 24 October 2023

Raphael Kanyire Seidu, Benjamin Eghan, Emmanuel Abankwah Ofori, George Kwame Fobiri, Alex Osei Afriyie and Richard Acquaye

The purpose of this study is to investigate the physical, ultraviolet (UV), colour appearance and colour fastness properties of selected fabrics dyed with natural dyes from Daboya…

Abstract

Purpose

The purpose of this study is to investigate the physical, ultraviolet (UV), colour appearance and colour fastness properties of selected fabrics dyed with natural dyes from Daboya and Ntonso communities of Ghana. The study further highlights the rich cultural heritage of traditional dyeing from these two communities. Craftsmen in West Africa especially Ghana, have sustained the traditional dyeing methods to produce textile products for consumers.

Design/methodology/approach

In this study, two sample fabrics were purchased from craftsmen at Ntonso and Daboya communities in Ghana. These fabrics were analysed at the laboratory under standard test methods for their physical, UV, colour appearance and colour fastness properties.

Findings

Results showed that all the sample fabrics have good UV shielding performance (ratings above 50+). Daboya sample fabrics (dyed with indigo dyes) produced more colour stains than the sample fabrics from Ntonso (dyed with black “kuntunkuni” dyes). The K/Ssum value or colour yield reduced after washing but that alternatively increased the calculated ultraviolet protection factor.

Practical implications

Findings from this study exposed the unique UV performance of dyed traditional fabrics (using natural dyes) from Ntonso and Daboya communities in Ghana. This inspires and enforces the need for craftsmen to improve their production cycle to produce these fabrics in different sizes which provides the necessary UV shielding abilities for consumers in the wake of climate changes.

Originality/value

This study demonstrated that the natural dyeing process at the two communities produced relatively good UV and colour fastness properties of the sample fabrics. These eco-friendly dyeing practices have survived over time to maintain and promote the concept of sustainability within the textile and fashion industry in Ghana.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 25 October 2023

Jianping Wang, Jinzhu Shen, Xiaofeng Yao and Fan Zhang

The purpose of this paper is to gain an in-depth understanding into the research progress, hot spots and future trends in smart gripping technology in the field of apparel smart…

Abstract

Purpose

The purpose of this paper is to gain an in-depth understanding into the research progress, hot spots and future trends in smart gripping technology in the field of apparel smart manufacturing.

Design/methodology/approach

This work scrutinised the current research status of the five automatic grasping methods for garment fabrics including the pneumatic suction grasping, the electrostatic grasping, the intrusive grasping and the dexterous grasping. Specifically, the principles, characteristics, main devices and the impact on garment production were discussed.

Findings

In particular, soft finger of the dexterous grasping method has good flexibility and adaptability in the process of fabric grasping, which provides a new solution for garment production automation. Up to now, the reviewed method in general exhibit good grasping speed, high grasping stability and flat grasping process. However, in the face of complex fabric materials which are thin and flexible and do not return their original shapes when deformed in practical applications, the gripper for automatic fabric grasping need new technological breakthroughs in the positioning accuracy, grab efficiency and flexible grasping.

Originality/value

The outcomes offered an overview of the research status and future trends of the automatic grasping methods for garment fabrics in the field of apparel intelligent manufacturing. It could not only provide scholars with convenience in identifying research hot spots and building potential cooperation in the follow-up research but also assist beginners in searching core scholars and literature of great significance.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 September 2023

Murat Demir and Gonca Balci Kilic

The purpose of this study is to explore the effect of stitch type and stitch direction on the dynamic drape behavior of the woven fabric.

127

Abstract

Purpose

The purpose of this study is to explore the effect of stitch type and stitch direction on the dynamic drape behavior of the woven fabric.

Design/methodology/approach

In this paper, the effectiveness of stitch type and stitch directions on dynamic drape behaviors were investigated. Fabric parts were sewn together with two types of the stitch (lockstitch and overlock stitch) on three different stitch directions (warp, weft and bias (45°)). The static drape coefficients (SDC) of unsewn and sewn fabrics were measured according to the image process method. Dynamic drape coefficients (DDC) of fabrics were also measured using the same method at six different (25, 50, 75, 100, 125, 150 rpms) rotation speeds. Additionally, bending length and bending rigidity were measured using the Cantilever test method.

Findings

Experimental results showed that stitch type and stitch directions are effective on the dynamic drape behaviors of the fabric. Overlock stitch resulted in greater DDC than the lock stitch. For both of the stitch type, DDC for the stitch on the warp direction are greater than the stitch on the weft and bias direction for all speeds. In addition, bending length, hence the bending rigidity, are greater for overlock stitch type and always weft direction resulted in greater than the warp and bias direction.

Originality/value

Fabric drape is vital for garment appearance and is gaining popularity with the advancement of virtual technology, enabling virtual visualization of garments. While previous studies have predominantly examined either the static or dynamic drape behavior of individual fabric panels, or solely focused on the static drape behavior of sewn fabrics, this study acknowledges the significance of incorporating the influence of stitch type and direction on dynamic drape behaviors. Considering that fabrics are sewn together to create garments and that DDC provides a more accurate representation of real-time fabric behavior compared to SDC, this research makes a valuable contribution to the existing literature by investigating the impact of stitch type and direction specifically on DDC.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 203