Search results

1 – 10 of 214
Open Access
Article
Publication date: 28 June 2022

Olli Väänänen and Timo Hämäläinen

Minimizing the energy consumption in a wireless sensor node is important for lengthening the lifetime of a battery. Radio transmission is the most energy-consuming task in a…

995

Abstract

Purpose

Minimizing the energy consumption in a wireless sensor node is important for lengthening the lifetime of a battery. Radio transmission is the most energy-consuming task in a wireless sensor node, and by compressing the sensor data in the online mode, it is possible to reduce the number of transmission periods. This study aims to demonstrate that temporal compression methods present an effective method for lengthening the lifetime of a battery-powered wireless sensor node.

Design/methodology/approach

In this study, the energy consumption of LoRa-based sensor node was evaluated and measured. The experiments were conducted with different LoRaWAN data rate parameters, with and without compression algorithms implemented to compress sensor data in the online mode. The effect of temporal compression algorithms on the overall energy consumption was measured.

Findings

Energy consumption was measured with different LoRaWAN spreading factors. The LoRaWAN transmission energy consumption significantly depends on the spreading factor used. The other significant factors affecting the LoRa-based sensor node energy consumption are the measurement interval and sleep mode current consumption. The results show that temporal compression algorithms are an effective method for reducing the energy consumption of a LoRa sensor node by reducing the number of LoRa transmission periods.

Originality/value

This paper presents with a practical case that it is possible to reduce the overall energy consumption of a wireless sensor node by compressing sensor data in online mode with simple temporal compression algorithms.

Details

Sensor Review, vol. 42 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 30 April 2021

Mohamed Abbas and Nasser Otayf

The purpose of this paper is to minimize energy usage by maximizing network life in the creation of applications and protocols

1585

Abstract

Purpose

The purpose of this paper is to minimize energy usage by maximizing network life in the creation of applications and protocols

Design/methodology/approach

This paper presents a novel methodology for optimum energy consumption in wireless sensor networks. The proposed methodology introduces some protocols and logarithms that effectively contributed to reducing energy consumption in these types of networks.

Findings

The results of that comparison showed the ability of those logarithms and protocols to reduce that energy but in varying proportions. It can be concluded that a significant reduction in energy consumption approximately 50% could be obtained by the proposed methodology.

Originality/value

Here, a novel methodology for optimum energy consumption in wireless sensor networks has been introduced.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 7 March 2018

Natasha Ramluckun and Vandana Bassoo

With the increasing acclaim of Wireless Sensor Networks and its diverse applications, research has been directed into optimising and prolonging the network lifetime. Energy…

Abstract

With the increasing acclaim of Wireless Sensor Networks and its diverse applications, research has been directed into optimising and prolonging the network lifetime. Energy efficiency has been a critical factor due to the energy resource impediment of batteries in sensor nodes. The proposed routing algorithm therefore aims at extending lifetime of sensors by enhancing load distribution in the network. The scheme is based on the chain-based routing technique of the PEGASIS (Power Energy GAthering in Sensor Information Systems) protocol and uses Ant Colony Optimisation to obtain the optimal chain. The contribution of the proposed work is the integration of the clustering method to PEGASIS with Ant Colony Optimisation to reduce redundancy of data, neighbour nodes distance and transmission delay associated with long links, and the employment an appropriate cluster head selection method. Simulation results indicates proposed method’s superiority in terms of residual energy along with considerable improvement regarding network lifetime, and significant reduction in delay when compared with existing PEGASIS protocol and optimised PEG-ACO chain respectively.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 25 September 2018

Ruwini Edirisinghe

The future construction site will be pervasive, context aware and embedded with intelligence. The purpose of this paper is to explore and define the concept of the digital skin of…

23287

Abstract

Purpose

The future construction site will be pervasive, context aware and embedded with intelligence. The purpose of this paper is to explore and define the concept of the digital skin of the future smart construction site.

Design/methodology/approach

The paper provides a systematic and hierarchical classification of 114 articles from both industry and academia on the digital skin concept and evaluates them. The hierarchical classification is based on application areas relevant to construction, such as augmented reality, building information model-based visualisation, labour tracking, supply chain tracking, safety management, mobile equipment tracking and schedule and progress monitoring. Evaluations of the research papers were conducted based on three pillars: validation of technological feasibility, onsite application and user acceptance testing.

Findings

Technologies learned about in the literature review enabled the envisaging of the pervasive construction site of the future. The paper presents scenarios for the future context-aware construction site, including the construction worker, construction procurement management and future real-time safety management systems.

Originality/value

Based on the gaps identified by the review in the body of knowledge and on a broader analysis of technology diffusion, the paper highlights the research challenges to be overcome in the advent of digital skin. The paper recommends that researchers follow a coherent process for smart technology design, development and implementation in order to achieve this vision for the construction industry.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 26 October 2020

Mohammed S. Al-kahtani, Lutful Karim and Nargis Khan

Designing an efficient routing protocol that opportunistically forwards data to the destination node through nearby sensor nodes or devices is significantly important for an…

Abstract

Designing an efficient routing protocol that opportunistically forwards data to the destination node through nearby sensor nodes or devices is significantly important for an effective incidence response and disaster recovery framework. Existing sensor routing protocols are mostly not effective in such disaster recovery applications as the networks are affected (destroyed or overused) in disasters such as earthquake, flood, Tsunami and wildfire. These protocols require a large number of message transmissions to reestablish the clusters and communications that is not energy efficient and result in packet loss. This paper introduces ODCR - an energy efficient and reliable opportunistic density clustered-based routing protocol for such emergency sensor applications. We perform simulation to measure the performance of ODCR protocol in terms of network energy consumptions, throughput and packet loss ratio. Simulation results demonstrate that the ODCR protocol is much better than the existing TEEN, LEACH and LORA protocols in term of these performance metrics.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 22 July 2020

Nsikak P. Owoh and M. Mahinderjit Singh

The proliferation of mobile phones with integrated sensors makes large scale sensing possible at low cost. During mobile sensing, data mostly contain sensitive information of…

2089

Abstract

The proliferation of mobile phones with integrated sensors makes large scale sensing possible at low cost. During mobile sensing, data mostly contain sensitive information of users such as their real-time location. When such information are not effectively secured, users’ privacy can be violated due to eavesdropping and information disclosure. In this paper, we demonstrated the possibility of unauthorized access to location information of a user during sensing due to the ineffective security mechanisms in most sensing applications. We analyzed 40 apps downloaded from Google Play Store and results showed a 100% success rate in traffic interception and disclosure of sensitive information of users. As a countermeasure, a security scheme which ensures encryption and authentication of sensed data using Advanced Encryption Standard 256-Galois Counter Mode was proposed. End-to-end security of location and motion data from smartphone sensors are ensured using the proposed security scheme. Security analysis of the proposed scheme showed it to be effective in protecting Android based sensor data against eavesdropping, information disclosure and data modification.

Details

Applied Computing and Informatics, vol. 18 no. 1/2
Type: Research Article
ISSN: 2210-8327

Keywords

Open Access
Article
Publication date: 17 May 2022

M'hamed Bilal Abidine, Mourad Oussalah, Belkacem Fergani and Hakim Lounis

Mobile phone-based human activity recognition (HAR) consists of inferring user’s activity type from the analysis of the inertial mobile sensor data. This paper aims to mainly…

Abstract

Purpose

Mobile phone-based human activity recognition (HAR) consists of inferring user’s activity type from the analysis of the inertial mobile sensor data. This paper aims to mainly introduce a new classification approach called adaptive k-nearest neighbors (AKNN) for intelligent HAR using smartphone inertial sensors with a potential real-time implementation on smartphone platform.

Design/methodology/approach

The proposed method puts forward several modification on AKNN baseline by using kernel discriminant analysis for feature reduction and hybridizing weighted support vector machines and KNN to tackle imbalanced class data set.

Findings

Extensive experiments on a five large scale daily activity recognition data set have been performed to demonstrate the effectiveness of the method in terms of error rate, recall, precision, F1-score and computational/memory resources, with several comparison with state-of-the art methods and other hybridization modes. The results showed that the proposed method can achieve more than 50% improvement in error rate metric and up to 5.6% in F1-score. The training phase is also shown to be reduced by a factor of six compared to baseline, which provides solid assets for smartphone implementation.

Practical implications

This work builds a bridge to already growing work in machine learning related to learning with small data set. Besides, the availability of systems that are able to perform on flight activity recognition on smartphone will have a significant impact in the field of pervasive health care, supporting a variety of practical applications such as elderly care, ambient assisted living and remote monitoring.

Originality/value

The purpose of this study is to build and test an accurate offline model by using only a compact training data that can reduce the computational and memory complexity of the system. This provides grounds for developing new innovative hybridization modes in the context of daily activity recognition and smartphone-based implementation. This study demonstrates that the new AKNN is able to classify the data without any training step because it does not use any model for fitting and only uses memory resources to store the corresponding support vectors.

Details

Sensor Review, vol. 42 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 14 March 2016

Glenn C Parry, Saara A. Brax, Roger S. Maull and Irene C. L. Ng

Improvement of reverse supply chains requires accurate and timely information about the patterns of consumption. In the consumer context, the ways to generate and access such…

9481

Abstract

Purpose

Improvement of reverse supply chains requires accurate and timely information about the patterns of consumption. In the consumer context, the ways to generate and access such use-visibility data are in their infancy. The purpose of this study is to demonstrate how the Internet of Things (IoT) may be operationalised in the domestic setting to capture data on a consumer’s use of products and the implications for reverse supply chains.

Design/methodology/approach

This study uses an explorative case approach drawing on data from studies of six UK households. “Horizontal” data, which reveals patterns in consumers’ use processes, is generated by combining “vertical” data from multiple sources. Use processes in the homes are mapped using IDEF0 and illustrated with the data. The quantitative data are generated using wireless sensors in the home, and qualitative data are drawn from online calendars, social media, interviews and ethnography.

Findings

The study proposes four generic measurement categories for operationalising the concept of use-visibility: experience, consumption, interaction and depletion, which together address the use of different household resources. The explorative case demonstrates how these measures can be operationalised to achieve visibility of the context of use in the home. The potential of such use-visibility for reverse supply chains is discussed.

Research limitations/implications

This explorative case study is based on an in-depth study of the bathroom which illustrates the application of use-visibility measures (UVMs) but provides a limited use context. Further research is needed from a wider set of homes and a wider set of use processes and contexts.

Practical implications

The case demonstrates the operationalisation of the combination of data from different sources and helps answer questions of “why?”, “how?”, “when?” and “how much?”, which can inform reverse supply chains. The four UVMs can be operationalised in a way that can contribute to supply chain visibility, providing accurate and timely information of consumption, optimising resource use and eliminating waste.

Originality/value

IDEF0 framework and case analysis is used to identify and validate four UVMs available through IoT data – that of experience, consumption, interaction and depletion. The UVMs characterise IoT data generated from a given process and inform the primary reverse flow in the future supply chain. They provide the basis for future data collection and development of theory around their effect on reverse supply chain efficiency.

Details

Supply Chain Management: An International Journal, vol. 21 no. 2
Type: Research Article
ISSN: 1359-8546

Keywords

Open Access
Article
Publication date: 11 October 2021

Fatima M. Isiaka, Awwal Adamu and Zainab Adamu

Basic capturing of emotion on user experience of web applications and browsing is important in many ways. Quite often, online user experience is studied via tangible measures such…

374

Abstract

Purpose

Basic capturing of emotion on user experience of web applications and browsing is important in many ways. Quite often, online user experience is studied via tangible measures such as task completion time, surveys and comprehensive tests from which data attributes are generated. Prediction of users’ emotion and behaviour in some of these cases depends mostly on task completion time and number of clicks per given time interval. However, such approaches are generally subjective and rely heavily on distributional assumptions making the results prone to recording errors. This paper aims to propose a novel method – a window dynamic control system – that addresses the foregoing issues.

Design/methodology/approach

Primary data were obtained from laboratory experiments during which 44 volunteers had their synchronized physiological readings – skin conductance response, skin temperature, eye movement behaviour and users activity attributes taken by biosensors. The window-based dynamic control system (PHYCOB I) is integrated to the biosensor which collects secondary data attributes from these synchronized physiological readings and uses them for two purposes: for detection of both optimal emotional responses and users’ stress levels. The method’s novelty derives from its ability to integrate physiological readings and eye movement records to identify hidden correlates on a webpage.

Findings

The results from the analyses show that the control system detects basic emotions and outperforms other conventional models in terms of both accuracy and reliability, when subjected to model comparison – that is, the average recoverable natural structures for the three models with respect to accuracy and reliability are more consistent within the window-based control system environment than with the conventional methods.

Research limitations/implications

Graphical simulation and an example scenario are only provided for the control’s system design.

Originality/value

The novelty of the proposed model is its strained resistance to overfitting and its ability to automatically assess user emotion while dealing with specific web contents. The procedure can be used to predict which contents of webpages cause stress-induced emotions to users.

Details

International Journal of Crowd Science, vol. 5 no. 3
Type: Research Article
ISSN: 2398-7294

Keywords

Open Access
Article
Publication date: 31 July 2020

Ado Adamou Abba Ari, Olga Kengni Ngangmo, Chafiq Titouna, Ousmane Thiare, Kolyang, Alidou Mohamadou and Abdelhak Mourad Gueroui

The Cloud of Things (IoT) that refers to the integration of the Cloud Computing (CC) and the Internet of Things (IoT), has dramatically changed the way treatments are done in the…

6262

Abstract

The Cloud of Things (IoT) that refers to the integration of the Cloud Computing (CC) and the Internet of Things (IoT), has dramatically changed the way treatments are done in the ubiquitous computing world. This integration has become imperative because the important amount of data generated by IoT devices needs the CC as a storage and processing infrastructure. Unfortunately, security issues in CoT remain more critical since users and IoT devices continue to share computing as well as networking resources remotely. Moreover, preserving data privacy in such an environment is also a critical concern. Therefore, the CoT is continuously growing up security and privacy issues. This paper focused on security and privacy considerations by analyzing some potential challenges and risks that need to be resolved. To achieve that, the CoT architecture and existing applications have been investigated. Furthermore, a number of security as well as privacy concerns and issues as well as open challenges, are discussed in this work.

Details

Applied Computing and Informatics, vol. 20 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 10 of 214