Search results

1 – 10 of 86
Article
Publication date: 20 September 2023

Zhifang Wang, Quanzhen Huang and Jianguo Yu

In this paper, the authors take an amorphous flattened air-ground wireless self-assembling network system as the research object and focus on solving the wireless self-assembling…

Abstract

Purpose

In this paper, the authors take an amorphous flattened air-ground wireless self-assembling network system as the research object and focus on solving the wireless self-assembling network topology instability problem caused by unknown control communication faults during the operation of this system.

Design/methodology/approach

In the paper, the authors propose a neural network-based direct robust adaptive non-fragile fault-tolerant control algorithm suitable for the air-ground integrated wireless ad hoc network integrated system.

Findings

The simulation results show that the system eventually tends to be asymptotically stable, and the estimation error asymptotically tends to zero with the feedback adjustment of the designed controller. The system as a whole has good fault tolerance performance and autonomous learning approximation performance. The experimental results show that the wireless self-assembled network topology has good stability performance and can change flexibly and adaptively with scene changes. The stability performance of the wireless self-assembled network topology is improved by 66.7% at maximum.

Research limitations/implications

The research results may lack generalisability because of the chosen research approach. Therefore, researchers are encouraged to test the proposed propositions further.

Originality/value

This paper designs a direct, robust, non-fragile adaptive neural network fault-tolerant controller based on the Lyapunov stability principle and neural network learning capability. By directly optimizing the feedback matrix K to approximate the robust fault-tolerant correction factor, the neural network adaptive adjustment factor enables the system as a whole to resist unknown control and communication failures during operation, thus achieving the goal of stable wireless self-assembled network topology.

Book part
Publication date: 20 November 2023

Surjeet Dalal, Bijeta Seth and Magdalena Radulescu

Customers today expect businesses to cater to their individual needs by tailoring the products they purchase to their own preferences. The term “Industry 5.0” refers to a new wave…

Abstract

Customers today expect businesses to cater to their individual needs by tailoring the products they purchase to their own preferences. The term “Industry 5.0” refers to a new wave of manufacturing that aims to meet each customer's unique demands. Even while Industry 4.0 allowed for mass customization, that wasn't good enough before, customers today demand individualized products at scale, and Industry 5.0 is driving the transition from mass customization to mass personalization to meet these demands. It caters to the individual needs of each consumer by meeting their demands. More specialized components for use in medicine are made possible by the widespread customization made possible by Industry 5.0. These individualized parts are included into the medical care of the patient to meet their specific needs and preferences. In the current medical revolution, an enabling technology of Industry 5.0 can produce medical implants, artificial organs, bodily fluids, and transplants with pinpoint accuracy. With the advent of AI-enabled sensors, we now live in a world where data can be swiftly analyzed. Machines may be programmed to make complex choices on the fly. In the medical field, these innovations allow for exact measurement and monitoring of human body variables according to the individual's needs. They aid in monitoring the body's response to training for peak performance. It allows for the digital dissemination of accurate healthcare data networks. In order to collect and exchange relevant patient data, every equipment is online.

Details

Digitalization, Sustainable Development, and Industry 5.0
Type: Book
ISBN: 978-1-83753-191-2

Keywords

Article
Publication date: 5 December 2023

Yuan Chang, Xinguo Ming, Xiaoqiang Liao, Yuguang Bao, Zhihua Chen and Wenyan Song

This study is a reference for manufacturers who are promoting their product-service system (PSS) development. Currently, improvements in both digital customization and…

Abstract

Purpose

This study is a reference for manufacturers who are promoting their product-service system (PSS) development. Currently, improvements in both digital customization and sustainability for various smart PSS categories have been considered rarely. This paper addresses this research gap by developing relevant models.

Design/methodology/approach

The development trends of customization-oriented PSS are described in a literature review. An in-depth multiple-case study methodology is adopted, and seven manufacturing companies are sampled. The goal is to identify digital customization measures that can be employed on representative smart PSS models and to explore how these models can create sustainable value.

Findings

This study provides valuable insights by uncovering a synthesis framework for achieving customization of the product/use/result-oriented smart PSSs, and the relevant representative smart functions are summarized. This identifies how digital customization capabilities can improve sustainability, including direct economic value for customers as well as additional social benefits and environmental improvements during customization.

Originality/value

Currently, the influence of digitalization on customized offerings and the relevant impact on sustainability development have not been fully addressed to date. This study provides comprehensive information with a reference value for digital customization transformation among the three main types of smart PSS.

Details

Journal of Manufacturing Technology Management, vol. 35 no. 1
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 14 March 2023

Roosefert Mohan, J. Preetha Roselyn and R. Annie Uthra

The artificial intelligence (AI) based total productive maintenance (TPM) condition based maintenance (CBM) approach through Industry 4.0 transformation can well predict the…

Abstract

Purpose

The artificial intelligence (AI) based total productive maintenance (TPM) condition based maintenance (CBM) approach through Industry 4.0 transformation can well predict the breakdown in advance to eliminate breakdown.

Design/methodology/approach

Meeting the customer requirement as per the delivery schedule with the existing resources are always a big challenge in industries. Any catastrophic breakdown in the equipment leads to increase in production loss, damage to machines, repair cost, time and affects delivery. If these breakdowns are predicted in advance, the breakdown can be addressed before its occurrence and the demand supply chain can be met. TPM is one of the essential operational excellence tool used in industries to utilize the existing resources of a plant in a optimal way. The conventional time based maintenance (TBM) and CBM approach of TPM in Industry 3.0 is time consuming and not accurate enough to achieve zero down time.

Findings

The proposed AI and IIoT based TPM is achieved in a digitalized data oriented platform to monitor and control the health status of the machine which may reduce the catastrophic breakdown by 95% and also improves the quality rate and machine performance rate. Based on the identified key signature parameters related to major breakdown are measured using the sensors, digitalised by programmable logic controller (PLC) and monitored by supervisory control and data acquisition (SCADA) and predicted in server or cloud.

Originality/value

Long short term memory based deep learning network was developed as a regression forecasting model to predict the remaining useful life RUL of the part or assembly and based on the predictions, corrective action has been implemented before the occurrence of breakdown. The reliability and consistency of the proposed approach are validated and horizontally deployed in similar machines to achieve zero downtime.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 29 November 2023

Rupinder Singh, Gurwinder Singh and Arun Anand

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an…

Abstract

Purpose

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an Internet of Things (IOT)-based solution.

Design/methodology/approach

The approach used in this study is based on a bibliographic analysis for the re-occurrence of DH in the bovine after surgery. Using SolidWorks and ANSYS, the computer-aided design model of the implant was 3D printed based on literature and discussions on surgical techniques with a veterinarian. To ensure the error-proof design, load test and strain–stress rate analyses with boundary distortion have been carried out for the implant sub-assembly.

Findings

An innovative IOT-based additive manufacturing solution has been presented for the construction of a mesh-type sensor (for the health monitoring of bovine after surgery).

Originality/value

An innovative mesh-type sensor has been fabricated by integration of metal and polymer 3D printing (comprising 17–4 precipitate hardened stainless steel and polyvinylidene fluoride-hydroxyapatite-chitosan) without sacrificing strength and specific absorption ratio value.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 June 2022

Larissa Statsenko, Aparna Samaraweera, Javad Bakhshi and Nicholas Chileshe

Based on the systematic literature review, this paper aims to propose a framework of Construction 4.0 (C4.0) scenarios, identifying Industry 4.0 (I4.0) enabling technologies and…

1779

Abstract

Purpose

Based on the systematic literature review, this paper aims to propose a framework of Construction 4.0 (C4.0) scenarios, identifying Industry 4.0 (I4.0) enabling technologies and their applications in the construction industry. The paper reviews C4.0 trends and potential areas for development.

Design/methodology/approach

In this research, a systematic literature review (SLR) methodology has been applied, including bibliographic coupling analysis (BCA), co-citation network analysis of keywords, the content analysis with the visualisation of similarities (VOSviewer) software and aggregative thematic analysis (ATA). In total, 170 articles from the top 22 top construction journals in the Scopus database between 2013 and 2021 were analysed.

Findings

Six C4.0 scenarios of applications were identified. Out of nine I4.0 technology domains, Industrial Internet of Things (IIoT), Cloud Computing, Big Data and Analytics had the most references in C4.0 research, while applications of augmented/virtual reality, vertical and horizontal integration and autonomous robotics yet provide ample avenues for the future applied research. The C4.0 application scenarios include efficient energy usage, prefabricated construction, sustainability, safety and environmental management, indoor occupant comfort and efficient asset utilisation.

Originality/value

This research contributes to the body of knowledge by offering a framework of C4.0 scenarios revealing the status quo of research published in the top construction journals into I4.0 technology applications in the sector. The framework evaluates current C4.0 research trends and gaps in relation to nine I4.0 technology domains as compared with more advanced industry sectors and informs academic community, practitioners and strategic policymakers with interest in C4.0 trends.

Details

Construction Innovation , vol. 23 no. 5
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 5 January 2024

Caroline Silva Araújo, Emerson de Andrade Marques Ferreira and Dayana Bastos Costa

Tracking physical resources at the construction site can generate information to support effective decision-making and building production control. However, the methods for…

Abstract

Purpose

Tracking physical resources at the construction site can generate information to support effective decision-making and building production control. However, the methods for conventional tracking usually offer low reliability. This study aims to propose the integrated Smart Twins 4.0 to track and manage metallic formworks used in cast-in-place concrete wall systems using internet of things (IoT) (operationalized by radio frequency identification [RFID]) and building information modeling (BIM), focusing on increasing quality and productivity.

Design/methodology/approach

Design science research is the research approach, including an exploratory study to map the constructive system, the integrated system development, an on-site pilot implementation in a residential project and a performance evaluation based on acquired data and the perception of the project’s production team.

Findings

In all rounds of requests, Smart Twins 4.0 registered and presented the status from the formworks and the work progress of buildings in complete correspondence with the physical progress providing information to support decision-making during operation. Moreover, analyses of the system infrastructure and implementation details can drive researchers regarding future IoT and BIM implementation in real construction sites.

Originality/value

The primary contribution is the system proposal, centralized into a mobile app that contains a Web-based virtual model to receive data in real time during construction phases and solve a real problem. The paper describes Smart Twins 4.0 development and its requirements for tracking physical resources considering theoretical and practical previous research regarding RFID, IoT and BIM.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 15 March 2024

Mohamed Slamani, Hocine Makri, Aissa Boudilmi, Ilian A. Bonev and Jean-Francois Chatelain

This research paper aims to optimize the calibration process for an ABB IRB 120 robot, specifically for robotic orbital milling applications, by introducing and validating the use…

Abstract

Purpose

This research paper aims to optimize the calibration process for an ABB IRB 120 robot, specifically for robotic orbital milling applications, by introducing and validating the use of the observability index and telescopic ballbar for accuracy enhancement.

Design/methodology/approach

The study uses the telescopic ballbar and an observability index for the calibration of an ABB IRB 120 robot, focusing on robotic orbital milling. Comparative simulation analysis selects the O3 index. Experimental tests, both static and dynamic, evaluate the proposed calibration approach within the robot’s workspace.

Findings

The proposed calibration approach significantly reduces circularity errors, particularly in robotic orbital milling, showcasing effectiveness in both static and dynamic modes at various tool center point speeds.

Research limitations/implications

The study focuses on a specific robot model and application (robotic orbital milling), limiting generalizability. Further research could explore diverse robot models and applications.

Practical implications

The findings offer practical benefits by enhancing the accuracy of robotic systems, particularly in precision tasks like orbital milling, providing a valuable calibration method.

Social implications

While primarily technological, improved robotic precision can have social implications, potentially influencing fields where robotic applications are crucial, such as manufacturing and automation.

Originality/value

This study’s distinctiveness lies in advancing the accuracy and precision of industrial robots during circular motions, specifically tailored for orbital milling applications. The innovative approach synergistically uses the observability index and telescopic ballbar to achieve these objectives.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 August 2023

Raghavendra Rao N.S. and Chitra A.

The purpose of this study is to propose an extended reliability method for an industrial motor drive by integrating the physics of failure (PoF).

Abstract

Purpose

The purpose of this study is to propose an extended reliability method for an industrial motor drive by integrating the physics of failure (PoF).

Design/methodology/approach

Industrial motor drive systems (IMDS) are currently expected to perform beyond the desired operating conditions to meet the demand. The PoF of the subsystem affects its reliability under such harsh operating circumstances. It is crucial to estimate reliability by integrating PoF, which helps in understanding its impact and to develop a fault-tolerant design, particularly in such an integrated drive system. An integrated PoF extended reliability method for industrial drive system is proposed to address this issue. In research, the numerical failure rate of each component of industrial drive is obtained first with the help of the MIL-HDBK-217 military handbook. Furthermore, the mathematically deduced proposed approach is modeled in the GoldSim Monte Carlo reliability workbench.

Findings

From the results, for a 15% rise in integrated PoF, the reliability and availability of the entire IMDS dropped by 23%, resulting in an impact on mean time to failure (MTTF).

Originality/value

The integrated PoF of the motor and motor controller affects industrial drive reliability, which falls to 0.18 with the least MTTF (2.27 years); whose overall reliability of industrial drive drops to 0.06 if it is additionally integrated with communication protocol.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 28 September 2023

Mariam Moufaddal, Asmaa Benghabrit and Imane Bouhaddou

The health crisis has highlighted the shortcomings of the industry sector which has revealed its vulnerability. To date, there is no guarantee of a return to the “world before”…

Abstract

Purpose

The health crisis has highlighted the shortcomings of the industry sector which has revealed its vulnerability. To date, there is no guarantee of a return to the “world before”. The ability of companies to cope with these changes is a key competitive advantage requiring the adoption/mastery of industry 4.0 technologies. Therefore, companies must adapt their business processes to fit into similar situations.

Design/methodology/approach

The proposed methodology comprises three steps. First, a comparative analysis of the existing CPSs is elaborated. Second, following this analysis, a deep learning driven CPS framework is proposed highlighting its components and tiers. Third, a real industrial case is presented to demonstrate the application of the envisioned framework. Deep learning network-based methods of object detection are used to train the model and evaluation is assessed accordingly.

Findings

The analysis revealed that most of the existing CPS frameworks address manufacturing related subjects. This illustrates the need for a resilient industrial CPS targeting other areas and considering CPSs as loopback systems preserving human–machine interaction, endowed with data tiering approach for easy and fast data access and embedded with deep learning-based computer vision processing methods.

Originality/value

This study provides insights about what needs to be addressed in terms of challenges faced due to unforeseen situations or adapting to new ones. In this paper, the CPS framework was used as a monitoring system in compliance with the precautionary measures (social distancing) and for self-protection with wearing the necessary equipments. Nevertheless, the proposed framework can be used and adapted to any industrial or non-industrial environments by adjusting object detection purpose.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 10 of 86