Search results

1 – 10 of 230
Article
Publication date: 21 March 2008

Manpreet Kaur, Harpreet Singh and Satya Prakash

This paper seeks to summarise the results of available research on the use of high velocity oxy‐fuel (HVOF) thermal‐spray technique to provide protection against high temperature…

1454

Abstract

Purpose

This paper seeks to summarise the results of available research on the use of high velocity oxy‐fuel (HVOF) thermal‐spray technique to provide protection against high temperature corrosion and erosion‐corrosion of materials.

Design/methodology/approach

This paper describes one of the recent thermal‐spray processes, namely HVOF thermal‐spray technology and presents a survey of the studies on the use of this technique to provide protection against corrosion and erosion‐corrosion of high temperature alloys, with a special emphasis on boiler steels.

Findings

High temperature corrosion and erosion‐corrosion are serious problems observed in steam‐powered electricity generation plants, gas turbines, internal combustion engines, fluidized bed combustors, industrial waste incinerators and recovery boilers in paper and pulp industries. These problems can be prevented by changing the material or altering the environment, or by separating the component surface from the environment. Corrosion prevention by the use of coatings for separating materials from the environment is gaining importance in surface engineering. Amongst various surface modifying techniques, thermal spraying has developed relatively rapidly due to the use of advanced coating formulations and improvements in coating application technology. One of the variants of thermal spraying, namely HVOF has gained popularity in recent times due to its flexibility for in‐situ applications and superior coating properties.

Research limitations/implications

This review covers mainly information that has been reported previously in the open literature, international journals and some well‐known textbooks.

Practical implications

The paper presents a concise summary of information for scientists and academics, planning to start their research work in the area of surface engineering.

Originality/value

This paper fulfils an identified information/resources need and offers practical help to an individual starting out on a career in the area of surface engineering for erosion‐corrosion and wear.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 July 2007

D. Rezakhani

Four thermal spray coatings were subjected to high temperature corrosive environments of oil‐fired boiler conditions to compare their corrosion protection under simulated…

1157

Abstract

Purpose

Four thermal spray coatings were subjected to high temperature corrosive environments of oil‐fired boiler conditions to compare their corrosion protection under simulated conditions. The coatings included FeCrAl, Tafaloy 45CT, which were arc‐sprayed, 50Ni‐50Cr and Cr3C2‐NiCr, which were coated by high velocity oxy fuel spray (HVOF) method.

Design/methodology/approach

The coating substrates used were SA213TP 347H, SA213 T11 and SA213 T22 alloys that are widely used as boiler tube materials. Specimens were covered with a synthetic ash mixture of 70 per cent V2O5‐20 per cent Na2SO4‐10 per cent NaCl and exposed to 550°C and 650oC°for 192 h (6 cycles). After high temperature corrosion tests, weight change curves were obtained; specimens were examined by metallographical techniques, scanning electron microscopy and EDX analyses.

Findings

Salt deposits attacked steels and coatings during the exposure. The corrosion rates were strongly affected by the composition of the scale formed adjacent to the steels and coatings surfaces. Austenitic steel was only bare material that experienced uniform corrosion in the tests. Ferritic steels were primarily attacked by grain boundary corrosion. Thermally sprayed coatings were mainly attached through oxides and voids at splat boundaries. FeCrAl and 50Ni‐50Cr were prone to spalling. Tafaloy 45CT is also a promising method for producing homogenous coatings. Cr3C2‐NiCr 80/20 coating remained mostly intact.

Originality/value

This paper provides useful information about corrosion behaviours of four coatings used for common boiler tubes. It shows with a practical explanation how the bare material and coatings react in corrosion simulated environments.

Details

Anti-Corrosion Methods and Materials, vol. 54 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 February 2020

Santosh Kumar, Manoj Kumar and Neeru Jindal

This paper aims to consolidate the results of various researchers focusing the different applications, so that this paper could become the torch bearer for the futuristic…

Abstract

Purpose

This paper aims to consolidate the results of various researchers focusing the different applications, so that this paper could become the torch bearer for the futuristic researchers working in the domain of cold gas dynamics spray coating.

Design/methodology/approach

A study on the cold spray coating is presented by summarizing the data present in literature. Important factors such as coating temperature, pressure, coating thickness, particle size, which affect the erosion-corrosion (E-C) resistance, physical and mechanical properties of boiler steel are stated. This paper also addresses the use of cold spray coating and compares it with other different thermal spray processes.

Findings

From the literature review, it was noticed that cold spray technology is best as compare to other thermal spray processes to reduce porosity, increase hardness, adhesion strength and retention in properties of feedstock powders.

Originality/value

Cold spray coating technology has a great potential in almost every field especially in restoration of surfaces, generation of complex surface, biomedical application, resist hot corrosion, wear, oxidation and erosion corrosion.

Details

World Journal of Engineering, vol. 17 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 December 2018

Mustafa Öcal and Recep Sadeler

The purpose of this study is to describe the environmentally assisted cracking (EAC) of AISI 316L stainless steel as bare and coated cases in several corrosion environments. The…

169

Abstract

Purpose

The purpose of this study is to describe the environmentally assisted cracking (EAC) of AISI 316L stainless steel as bare and coated cases in several corrosion environments. The main purpose of this study is to extend the lifespan of 316L material under corrosive fatigue in sodium chloride environments.

Design/methodology/approach

Fatigue tests carried out by using a Schenk type plane bending fatigue machine made by Tokyokoki Co. A scanning electron microscope (SEM) was used to observe the fracture surfaces and tested specimen surfaces. The micro-Vickers hardness of specimens was measured by using a PC-controlled Buehler–Omnimet tester.

Findings

Under reciprocating bending condition (R = −1) the behavior of 316L SS bare samples and 316L SS coated with Al-5%Mg samples were investigated comparatively at room temperature in ambient air and in several corrosion solutions. The results obtained from the data showed that Al-5Mg coating procedure significantly stabilized the 316L SS even in the most aggressive environment 5 per cent NaCl solution as compared with bare samples.

Originality/value

Al-5Mg coating showed a stable structure under the corrosion liquids used in the experiments. The coating material served as a stable barrier between the base material and the corrosion fluid, thus ensuring a tightness even in long-term tests below the endurance limit.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 July 1983

D.H. James

Thermal spraying is a problem‐solving technology which contributes to almost every branch of engineering from the extraction and production of raw materials to the manufacture of…

Abstract

Thermal spraying is a problem‐solving technology which contributes to almost every branch of engineering from the extraction and production of raw materials to the manufacture of usable articles. By placing the correct surfacing material where it is best employed, thermal spraying allows engineers to improve product performance, reduce maintenance times and costs, save energy and reduce production costs. As the demands of other technologies have increased the thermal spraying industry has responded by providing surfaces which will reliably withstand higher loads, faster speeds, higher temperatures and more aggressive environments. Over the past decade, building on previous knowledge and experience, thermal spraying technology has contributed to the engineering successes in many spheres by enabling the engineer to apply the right surface to the optimum basis material at reasonable cost.

Details

Anti-Corrosion Methods and Materials, vol. 30 no. 7
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 1 December 1968

M.H. Burke

SINCE the introduction of plasma are welding, in its simplest form, the process and technology has made extremely rapid strides. It is the object of this paper to explain, in…

Abstract

SINCE the introduction of plasma are welding, in its simplest form, the process and technology has made extremely rapid strides. It is the object of this paper to explain, in simple terms, the various types of plasma systems, equipments and applications for which they can be used.

Details

Aircraft Engineering and Aerospace Technology, vol. 40 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 April 1979

The term flamespraying designates all coating processes whereby materials in wire or powder form which do not decompose at high temperatures are introduced in a high temperature…

Abstract

The term flamespraying designates all coating processes whereby materials in wire or powder form which do not decompose at high temperatures are introduced in a high temperature zone and then are atomised by either a gas jet or compressed air, whereby small particles are formed which subsequently are propelled at very high speeds onto adequately prepared substrates where they form coatings of most unusual properties.

Details

Aircraft Engineering and Aerospace Technology, vol. 51 no. 4
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 15 November 2022

Chao Han, Li Ma, Bo Jiang Ma, Guosheng Huang and Ying Xiang Ma

This paper aims to verify weather atmospheric plasma spray (APS) in situ remelting posttreatment is effective for densifying the porous FeCoCrMoCBY amorphous alloy (FAA) coating…

Abstract

Purpose

This paper aims to verify weather atmospheric plasma spray (APS) in situ remelting posttreatment is effective for densifying the porous FeCoCrMoCBY amorphous alloy (FAA) coating and improving the antiabrasion and anticorrosion performances or not.

Design/methodology/approach

APS was used to deposit and in situ densify FAA coating on the 40Cr substrate. Scanning electron microscope, X-ray diffractometer, energy dispersive spectroscopy, neutral salt spray, hardness and wear behavior test were used to evaluate the densifying effects.

Findings

APS remelting technology can effectively improve the hardness of the coating by reducing the porosity. After remelting at 30 kW power, the hardness of the coating increased by about 260 HV0.2 and the porosity decreased to 2.78%. The amorphous content of the coating is 93.9%, which is about 3.5% lower than original powders. The electrochemical impedance spectrum and neutral salt spray test results show that APS remelting can reduce the corrosion rate by about 62.7%.

Originality/value

APS remelting method is firstly proposed in this work to replace laser remelting or laser cladding methods. APS remelting method can effectively improve the corrosion and abrasion resistance of the FAA coating by increasing the densification with much low recrystallization, which is big progress for application of FAA coatings.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 April 2005

Harpreet Singh, D. Puri and S. Prakash

Plasma spray coating technologies are capable of depositing a wide range of compositions without significantly heating the substrate. The objective is to characterise plasma

1380

Abstract

Purpose

Plasma spray coating technologies are capable of depositing a wide range of compositions without significantly heating the substrate. The objective is to characterise plasma sprayed metallic coatings on a Fe‐based superalloy.

Design/methodology/approach

NiCrAlY, Ni‐20Cr, Ni3Al and Stellite‐6 metallic coatings were deposited on a Fe‐based superalloy (32Ni‐21Cr‐0.3Al‐0.3Ti‐1.5Mn‐1.0Si‐0.1C‐Bal Fe) by the shrouded plasma spray process. The coatings were characterised in relation to coating thickness, porosity, microhardness and microstructure. The high temperature oxidation behaviour of the coatings was investigated in brief. The techniques used in the present investigation include metallography, XRD and SEM/EDAX.

Findings

All the coatings exhibited a lamellar structure with distinctive boundaries along with the presence of some porosity and oxide inclusions. The microhardness of the coatings was observed to vary with the distance from the coating‐substrate interface. The St‐6 coating had the maximum microhardness, whereas the lowest hardness was exhibited by the Ni3Al coating. The phases revealed by XRD of the coatings confirmed the formation of solid solutions, whereas EDAX analysis of the as‐sprayed coatings confirmed the presence of basic elements of the coating powders. So far as high temperature oxidation behaviour is concerned, all of the coatings followed the parabolic rate law and resulted in the formation of protective oxide scales on the substrate superalloy.

Originality/value

The plasma spray process provides the possibility of developing coatings of Ni3Al as well as commercial available NiCrAlY, Ni‐20Cr and St‐6 powders on Fe‐based superalloy Superfer 800H

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 February 1974

MOLYBDENUM wire, as a coating material, is well known since molybdenum has many advantages as a hard bearing surface; it is highly scuff‐resistant and has a low coefficient of…

Abstract

MOLYBDENUM wire, as a coating material, is well known since molybdenum has many advantages as a hard bearing surface; it is highly scuff‐resistant and has a low coefficient of friction. Metco now announce a self‐fusing, high‐molybdenum powder which can be plasma flame sprayed to produce tough, wear‐resistant coatings on many types of base materials, and in thicknesses ranging from 0–1 to 3 mm.

Details

Industrial Lubrication and Tribology, vol. 26 no. 2
Type: Research Article
ISSN: 0036-8792

1 – 10 of 230