Search results

1 – 10 of 19
Article
Publication date: 20 July 2021

Hamza Laloui, Noor Hanita Abdul Majid and Aliyah Nur Zafirah Sanusi

The paper aims to investigate and evaluate the impacts of the voids combination as a passive design feature on wind-driven ventilation performance in high-rise residential…

239

Abstract

Purpose

The paper aims to investigate and evaluate the impacts of the voids combination as a passive design feature on wind-driven ventilation performance in high-rise residential building units. It proposes a series of building models and thereon indoor ventilation performance and outlining why and how these building models designed with architectural design features are important. This study aims to provide a comprehensive understanding of how natural ventilation as a passive cooling strategy in living units of high-rise residential buildings can be applied through improving the provision of the architectural design feature of voids configurations.

Design/methodology/approach

The study was carried out through field measurements experiment and the computational fluid dynamics methods. A series of numerical simulations were carried out to calculate the indoor ventilation rate inside the case studies of the generated building models based on various variables such as horizontal voids type, size and wind directions.

Findings

The results indicate that the provision of a single-sided horizontal voids in building models can improve the indoor ventilation rate in units with cross ventilation mode up to 4 times, depending on wind direction and living unit location. The indoor ventilation performance in units located in models with single-sided horizontal voids is 17.54% higher than the units located in models without voids configuration. Furthermore, higher indoor ventilation performance was achieved in the case scenarios located at higher levels compared to the middle and lower levels in both horizontal voids types.

Originality/value

This study explores the application of voids combinations for natural ventilation performance, investigates the numerical simulation results and validates field measurements experiment data using CFD simulation.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 7
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 24 March 2021

Reza Fallahtafti and Mohammadjavad Mahdavinejad

Natural ventilation is an environmentally friendly effective way of improving thermal comfort and the quality of indoor conditions if applied properly. This study aims to…

394

Abstract

Purpose

Natural ventilation is an environmentally friendly effective way of improving thermal comfort and the quality of indoor conditions if applied properly. This study aims to investigate the physical mechanism of the air movement and also the influence of building geometry in a cross-ventilated room through a parametric study of window geometrical characteristics using computational fluid dynamics.

Design/methodology/approach

Momentum and continuity equations are solved by the control volume method using a commercially available software. Standard kɛ turbulence model is employed to simulate the incompressible airflow and SIMPLE algorithm to solve the conservation equations. Mean air velocity magnitude is measured at three different surfaces of different heights, and the effect of incoming wind velocity inside the building is studied.

Findings

The research concluded that window hood and sill projections reduce indoor wind velocity magnitude, play a major role in incoming wind direction and thus have a crucial impact on wind circulation and indoor air quality.

Social implications

The paper has evaluated redesigning of a both practical and ornamental architectural element named Palekaneh, which is found in many historical buildings in several hot places in the world. Its optimal design could increase indoor natural ventilation quality and decrease a space's cooling load. Therefore, a new passive cooling architectural element could be re-introduced to the regions previously enjoying such ornaments. This is economically efficient because it eventually saves a considerable amount of energy in the long run and is socially important because of the revitalization of architectural identity.

Originality/value

The role of a building envelope's physical features, although being studied for solar absorption and daylight availability, has rarely been investigated for natural ventilation, especially in a small scale, thus making the paper novel in this regard. This provides a guideline for designers to assess the impact of their design on redirecting wind-induced natural ventilation the very early stages of design.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 4 February 2021

Hamza Laloui, Noor Hanita Abdul Majid and Aliyah Nur Zafirah Sanusi

This paper aims to investigate the impacts of introducing voids combinations on natural ventilation performance in high-rise residential building living unit.

Abstract

Purpose

This paper aims to investigate the impacts of introducing voids combinations on natural ventilation performance in high-rise residential building living unit.

Design/methodology/approach

This study was carried out through field measurement and computational fluid dynamics methods. The parameters of the study are void types and sizes, and a wind angle was used to formulate case studies.

Findings

The results indicate that the provision of a single-sided horizontal void larger by 50% increase the indoor air velocity performance up to 322.37% to 0.471 m/s in the living unit and achieves the required velocity for thermal comfort.

Originality/value

Passive design features are the most desirable techniques to enhance natural ventilation performance in the high-rise residential apartments for thermal comfort and indoor air quality purposes.

Article
Publication date: 1 December 2003

Abbas Ali Elmualim and H.B. Awbi

A combined windcatcher and light pipe (SunCatcher) was installed in the seminar room at the University of Reading, UK. Monitoring of indoor environment in real weather conditions…

1207

Abstract

A combined windcatcher and light pipe (SunCatcher) was installed in the seminar room at the University of Reading, UK. Monitoring of indoor environment in real weather conditions was conducted to evaluate the application of windcatchers for natural ventilation. In addition, a subjective occupancy survey was undertaken. External weather conditions and internal indoor air quality indicators were recorded. The “tracer‐gas decay” method using SF6 was used to establish air change rate for various conditions. The results indicated that the ventilation rate achieved through the windcatcher depends on the difference between internal and external air temperatures, and on wind speed and direction, in agreement with other published work in the area. The indoor air quality parameters were found to be within acceptable levels when the windcatcher was in operation. The measured air change rate was between 1.5ac/h and 6.8ac/h. Occupants’ questionnaires showed 75 per cent satisfaction with the internal conditions and welcomed the installation of the systems in UK buildings.

Details

Facilities, vol. 21 no. 13/14
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 17 October 2022

Jianbo Zhu, Qianqian Shi, Ce Zhang, Jingfeng Yuan, Qiming Li and Xiangyu Wang

Promoting low-carbon in the construction industry is important for achieving the overall low-carbon goals. Public–private partnership is very popular in public infrastructure…

Abstract

Purpose

Promoting low-carbon in the construction industry is important for achieving the overall low-carbon goals. Public–private partnership is very popular in public infrastructure projects. However, different perceptions of low-carbon and behaviors of public and private sectors can hinder the realization of low-carbon in these projects. In order to analyze the willingness of each stakeholder to cooperate towards low-carbon goals, an evolutionary game model is constructed.

Design/methodology/approach

An evolutionary game model that considers the opportunistic behavior of the participants is developed. The evolutionary stable strategies (ESSs) under different scenarios are examined, and the factors that influence the willingness to cooperate between the government and private investors are investigated.

Findings

The results illustrate that a well-designed system of profit distribution and subsidies can enhance collaboration. Excessive subsidies have negative impact on cooperation between the two sides, because these two sides can weaken income distribution and lead to the free-riding behavior of the government. Under the situation of two ESSs, there is also an optimal revenue distribution coefficient that maximizes the probability of cooperation. With the introduction of supervision and punishment mechanism, the opportunistic behavior of private investors is effectively constrained.

Originality/value

An evolutionary game model is developed to explore the cooperation between the public sector and the private sector in the field of low-carbon construction. Based on the analysis of the model, this paper summarizes the conditions and strategies that can enable the two sectors to cooperate.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 25 November 2019

Nuno Serra and Viriato Semiao

This paper aims to clarify the necessity of taking into account the commonly neglected radiation in built environments. Ignoring radiation within acclimatized spaces with moist…

Abstract

Purpose

This paper aims to clarify the necessity of taking into account the commonly neglected radiation in built environments. Ignoring radiation within acclimatized spaces with moist air, which is a participating medium, can yield inaccurate values of the relevant variables, endangering the Heating, ventilation, and air conditioning design accuracy and leading to energy inefficiencies and discomfort.

Design/methodology/approach

The paper uses computational fluid dynamics to predict non-isothermal flows with radiation, for both mixing and displacement ventilation strategies. The tool is applied to a lab-scale model (scale 1:30), and the results are compared with experimental data and predictions without radiation. Furthermore, the radiation influence is also assessed at real-scale level, including a parametric study on the effect of the air relative humidity on radiation.

Findings

The paper demonstrates the unequivocal impact of radiation on the flows thermal-kinematics at real-scale: ignoring radiation yields average air temperature differences of 2ºC. This becomes more evident for larger air optical thicknesses (larger relative humidity): changing it from 20 per cent to 50 per cent and 70 per cent yields maximum relative differences of 100 per cent for the velocity components and 0.4ºC for the air temperature. Nevertheless, the results for the lab-scale case are not so conclusive about the effect of moist air radiation on the thermal flow characteristics, but they evidence its impact on the flow kinematics (maximum relative differences of velocity components of 35 per cent).

Originality/value

The paper fulfills an identified need to clarify the relevant effects of air moisture on radiation and on the flow turbulence and thermal-kinematic characteristics for forced convective flows inside built environments.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 May 2016

Amos Madhlopa

The purpose of this paper is to investigate a wall-integrated solar chimney for passive ventilation of a building cavity. Ventilation is required to improve the circulation of air…

Abstract

Purpose

The purpose of this paper is to investigate a wall-integrated solar chimney for passive ventilation of a building cavity. Ventilation is required to improve the circulation of air in the built environment. This can be achieved through natural or forced convection. Natural circulation can be driven by renewable energy, and so it promotes sustainable exploitation of energy resources. Solar energy is one of the promising renewable energy resources.

Design/methodology/approach

The chimney was designed to face the Equator on the wall of a room which required ventilation. Mean monthly daily heating and cooling loads of the room were computed with and without a solar chimney by using hourly meteorological data from nine different weather sites at low, medium and high latitudes. The chimney was implemented with and without airflow control, and simulated by using the ESP-r software.

Findings

Results show that the solar chimney with airflow control marginally reduced the heating load in the building envelope, with a similar effect being exhibited by the chimney with uncontrolled airflow. The cooling load was reduced by the controlled airflow at all the nine sites. In contrast, the uncontrolled airflow increased the cooling load at some sites. In addition, the chimney with airflow control reduced the annual total thermal load at all the sites, while the chimney with uncontrolled airflow raised the total thermal load at some locations.

Originality/value

The performance of solar chimneys designed with and without airflow control systems has been investigated under the same prevailing meteorological conditions at a given site. Findings show that controlling airflow in a solar chimney reduces the total thermal load in the built environment. This information can be applied in different parts of the world.

Details

Journal of Engineering, Design and Technology, vol. 14 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 29 April 2021

Günsu Merin Abbas and Ipek Gursel Dino

Biocontaminants represent higher risks to occupants' health in shared spaces. Natural ventilation is an effective strategy against indoor air biocontamination. However, the…

Abstract

Purpose

Biocontaminants represent higher risks to occupants' health in shared spaces. Natural ventilation is an effective strategy against indoor air biocontamination. However, the relationship between natural ventilation and indoor air contamination requires an in-depth investigation of the behavior of airborne infectious diseases, particularly concerning the contaminant's viral and aerodynamic characteristics. This research investigates the effectiveness of natural ventilation in preventing infection risks for coronavirus disease (COVID-19) through indoor air contamination of a free-running, naturally-ventilated room (where no space conditioning is used) that contains a person having COVID-19 through building-related parameters.

Design/methodology/approach

This research adopts a case study strategy involving a simulation-based approach. A simulation pipeline is implemented through a number of design scenarios for an open office. The simulation pipeline performs integrated contamination analysis, coupling a parametric 3D design environment, computational fluid dynamics (CFD) and energy simulations. The results of the implemented pipeline for COVID-19 are evaluated for building and environment-related parameters. Study metrics are identified as indoor air contamination levels, discharge period and the time of infection.

Findings

According to the simulation results, higher indoor air temperatures help to reduce the infection risk. Free-running spring and fall seasons can pose higher infection risk as compared to summer. Higher opening-to-wall ratios have higher potential to reduce infection risk. Adjacent window configuration has an advantage over opposite window configuration. As a design strategy, increasing opening-to-wall ratio has a higher impact on reducing the infection risk as compared to changing the opening configuration from opposite to adjacent. However, each building setup is a unique case that requires a systematic investigation to reliably understand the complex airflow and contaminant dispersion behavior. Metrics, strategies and actions to minimize indoor contamination risks should be addressed in future building standards. The simulation pipeline developed in this study has the potential to support decision-making during the adaptation of existing buildings to pandemic conditions and the design of new buildings.

Originality/value

The addressed need of investigation is especially crucial for the COVID-19 that is contagious and hazardous in shared indoors due to its aerodynamic behavior, faster transmission rates and high viral replicability. This research contributes to the current literature by presenting the simulation-based results for COVID-19 as investigated through building-related and environment-related parameters against contaminant concentration levels, the discharge period and the time of infection. Accordingly, this research presents results to provide a basis for a broader understanding of the correlation between the built environment and the aerodynamic behavior of COVID-19.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 19 October 2018

Sofie Pelsmakers, Evy Vereecken, Miimu Airaksinen and Cliff C.A. Elwell

Millions of properties have suspended timber ground floors globally, with around ten million in the UK alone. However, it is unknown what the floor void conditions are, nor the…

Abstract

Purpose

Millions of properties have suspended timber ground floors globally, with around ten million in the UK alone. However, it is unknown what the floor void conditions are, nor the effect of insulating such floors. Upgrading floors changes the void conditions, which might increase or decrease moisture build-up and mould and fungal growth. The purpose of this paper is to provide a review of the current global evidence and present the results of in situ monitoring of 15 UK floor voids.

Design/methodology/approach

An extensive literature review on the moisture behaviour in both uninsulated and insulated suspended timber crawl spaces is supplemented with primary data of a monitoring campaign during different periods between 2012 and 2015. Air temperature and relative humidity sensors were placed in different floor void locations. Where possible, crawl spaces were visually inspected.

Findings

Comparison of void conditions to mould growth thresholds highlights that a large number of monitored floor voids might exceed the critical ranges for mould growth, leading to potential occupant health impacts if mould spores transfer into living spaces above. A direct comparison could not be made between insulated and uninsulated floors in the sample due to non-random sampling and because the insulated floors included historically damp floors. The study also highlighted that long-term monitoring over all seasons and high-resolution monitoring and inspection are required; conditions in one location are not representative of conditions in other locations.

Originality/value

This study presents the largest UK sample of monitored floors, evaluated using a review of current evidence and comparison with literature thresholds.

Details

International Journal of Building Pathology and Adaptation, vol. 37 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 14 June 2019

Samantha Organ

Heritage tourism has become increasingly popular, and improving the sustainability of such sites is essential both nationally and internationally. The purpose of this paper is to…

Abstract

Purpose

Heritage tourism has become increasingly popular, and improving the sustainability of such sites is essential both nationally and internationally. The purpose of this paper is to explore the opportunities and challenges of improving the condition and sustainability of a chapel at a busy international heritage tourist attraction.

Design/methodology/approach

A case study approach was adopted. This utilised interviews with four of the primary building professionals involved with the refurbishment project. Documentary analysis and observations were also used.

Findings

The present case study presents the opportunities and challenges faced by a tourist heritage attraction. Improvements to the condition and sustainability of such assets are essential to ensure their sustained and enhanced use, and the protection of heritage buildings. Such projects create opportunities to increase knowledge and understanding about these assets as well as enhancing opportunities for meaning making for visitors. The paper highlights the importance of a strong leader and a balanced team working towards common objectives. Further, whilst synergies between conservation and sustainability exist, there are also tensions and compromises.

Research limitations/implications

This case study highlights the opportunities and challenges of improving the condition and sustainability of built cultural heritage at a tourist attraction. Opportunities included increased knowledge and understanding about the heritage asset; enhancement of values for present and future generations; improved condition, increased usability; and increased sustainability. Challenges were: team turnover; delays resulting from archaeological findings; previous work resulting in building defects; the existing building condition; and unfamiliarity and the uncertainty regarding particular measures.

Practical implications

The practical implications of this case study include ensuring clear project objectives and a balanced project team are in place. These should be enhanced by a good system of information recording throughout the project to limit the impact of staff absence. Good communication within the team and with external members such as manufacturers will reduce the impact of unfamiliar products and aid in decision making. Future research should explore whether these findings are applicable to other heritage tourist attractions, and whether visitors’ narrative encounters with the asset change following a sustainability improvement project.

Originality/value

Limited research has been previously performed on improving the sustainability of built cultural heritage at tourist attractions. This research investigates the opportunities and challenges facing building professionals in improving such heritage assets. The improvement of heritage tourist attractions requires careful consideration. Whilst they need to be conserved for future generations, increasing the sustainability of such assets is essential to ensure their continued usability.

Details

International Journal of Building Pathology and Adaptation, vol. 38 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

1 – 10 of 19