Search results

1 – 10 of 296
Article
Publication date: 6 March 2024

Mouna Zerzeri, Intissar Moussa and Adel Khedher

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Abstract

Purpose

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Design/methodology/approach

The 3PIM is driven by a soft voltage source inverter (VSI) controlled by a specific space vector modulation. By adjusting the appropriate vector sequence selection, the desired VSI output voltage allows a real wind turbine speed emulation in the laboratory, taking into account the wind profile, static and dynamic behaviors and parametric variations for theoretical and then experimental analysis. A Mexican hat profile and a sinusoidal profile are therefore used as the wind speed system input to highlight the electrical, mechanical and electromagnetic system response.

Findings

The simulation results, based on relative error data, show that the proposed reactive power control method effectively estimates the flux and the rotor time constant, thus ensuring an accurate trajectory tracking of the wind speed for the wind emulation application.

Originality/value

The proposed architecture achieves its results through the use of mathematical theory and WTE topology combine with an online adaptive estimator and Lyapunov stability adaptation control methods. These approaches are particularly relevant for low-cost or low-power alternative current (AC) motor drives in the field of renewable energy emulation. It has the advantage of eliminating the need for expensive and unreliable position transducers, thereby increasing the emulator drive life. A comparative analysis was also carried out to highlight the online adaptive estimator fast response time and accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 October 2023

Mano S. and Nadaraja Pillai S.

This study aims to investigate the effect of downstream characteristics of S809 wind turbine blade with various extended flat plate (EFP) configuration. Wind farms are recently…

Abstract

Purpose

This study aims to investigate the effect of downstream characteristics of S809 wind turbine blade with various extended flat plate (EFP) configuration. Wind farms are recently modified to improve the power production through placing number of wind turbines and locations.

Design/methodology/approach

A series of wind tunnel experiments were carried out to evaluate the downstream wake characteristics of the S809 airfoil attached with various EFP (EFP, A = 0.1C, 0.2C and 0.3C) at various angles of attack corresponding to free stream velocity Reynolds number (Re) = 2.11 × 105 and various turbulence intensity (TI = 5%, 7%, 10% and 12%).

Findings

For the S809 wind turbine blade attached with EFP, the downstream velocity ratio decreases with increasing in angle of attack and the velocity deficit decrease with increasing turbulence intensity (TI) up to TI = 10%. The wake intensity for the S809 wind turbine blade and S809 airfoil with 10% of chord EFP performs the same for each downstream location.

Practical implications

Placing the wind turbine in the wind park next to another wind turbine poses a potential challenge for the park power performance. This research addresses the characteristics of the downstream turbulence intensity profile modified with the EFP in the wind turbine blade which improves the downstream characteristics of the turbine in the wind park.

Originality/value

The downstream velocity ratio decreases with increasing angle of attack and the velocity deficit decrease with increasing turbulence intensity (TI) up to TI = 10%.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 April 2024

Ali M. AlQahtani

Jubail Industrial City is one of the largest industrial centers in the Middle East, offering potential opportunities for renewable energy generation. This research paper presents…

Abstract

Purpose

Jubail Industrial City is one of the largest industrial centers in the Middle East, offering potential opportunities for renewable energy generation. This research paper presents a comprehensive analysis of the wind resources in Jubail Industrial City and proposes the design of a smart grid-connected wind farm for this strategic location.

Design/methodology/approach

The study used wind data collected at three different heights above ground level – 10, 50 and 90 m – over four years from 2017 to 2020. Key parameters, such as average wind speeds (WS), predominant wind direction, Weibull shape, scale parameters and wind power density (WPD), were analyzed. The study used Windographer, an exclusive software program designed to evaluate wind resources.

Findings

The average WS at the respective heights were 3.07, 4.29 and 4.58 m/s. The predominant wind direction was from the north-west. The Weibull shape parameter (k) at the three heights was 1.77, 2.15 and 2.01, while the scale parameter (c) was 3.36, 4.88 and 5.33 m/s. The WPD values at different heights were 17.9, 48.8 and 59.3 W/m2, respectively.

Originality/value

The findings suggest that Jubail Industrial City possesses favorable wind resources for wind energy generation. The proposed smart grid-connected wind farm design demonstrates the feasibility of harnessing wind power in the region, contributing to sustainable energy production and economic benefits.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 March 2023

Michal Cichowicz, Wojciech Pilecki, Marcin Wardach, Paweł Prajzendanc, Kamil Cierzniewski and Ryszard Palka

This paper aims to present the project of a permanent magnet synchronous machine which can be used as generator in the vertical axis wind turbine.

Abstract

Purpose

This paper aims to present the project of a permanent magnet synchronous machine which can be used as generator in the vertical axis wind turbine.

Design/methodology/approach

In the study, finite element analysis was used to perform simulation research of electrical machines. Based on the simulation studies, an experimental model was built. The paper presents also selected experimental results.

Findings

During the research, it was found that the radial arrangement of the permanent magnets is more favorable than the tangential one for the selected structure of the generator with permanent magnets.

Research limitations/implications

During the experimental research, a problem was encountered involving the correct control of the constructed generator at low rotational speeds.

Practical implications

The proposed solution can be used in low-speed vertical axis wind turbines.

Social implications

The presented research fits the global trend toward the use of alternative and renewable energy sources.

Originality/value

The paper presents new simulation studies of two low-speed generator topologies. The results for the radial and tangential arrangement of the permanent magnets in the rotor were verified. Based on this research, an experimental prototype of a generator for a slow-speed vertical axis wind turbine was built.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 November 2023

Abdeldjabar Benrabah, Farid Khoucha, Ali Raza and Mohamed Benbouzid

The purpose of this study is to improve the control performance of wind energy conversion systems (WECSs) by proposing a new sensorless, robust control strategy based on a Smith…

Abstract

Purpose

The purpose of this study is to improve the control performance of wind energy conversion systems (WECSs) by proposing a new sensorless, robust control strategy based on a Smith predictor active disturbance rejection control (SP-ADRC) associated with a speed/position estimator.

Design/methodology/approach

The estimator consists of a sliding mode observer (SMO) in combination with a phase-locked loop (PLL) to estimate the permanent magnet synchronous generator (PMSG) rotor position and speed. At the same time, the SP-ADRC is applied to the speed control loop of the variable-speed WECS control system to adapt strongly to dynamic characteristics under parameter uncertainties and disturbances.

Findings

Numerical simulations are conducted to evaluate the speed tracking performances under various wind speed profiles. The results show that the proposed sensorless speed control improves the accuracy of rotor speed and position estimation and provides better power tracking performance than a regular ADRC controller under fast wind speed variations.

Practical implications

This paper offers a new approach for designing sensorless, robust control for PMSG-based WECSs.

Originality/value

A new sensorless, robust control is proposed to improve the stability and tracking performance of PMSG-based WECSs. The SP-ADRC control attenuates the effects of parameter uncertainties and disturbances and eliminates the time-delay impact. The sensorless control design based on SMO and PLL improves the accuracy of rotor speed estimation and reduces the chattering problem of traditional SMO. The obtained results support the theoretical findings.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 October 2023

Lei Xiong, Hongjun Shi and Qixin Zhu

This study aims to construct a novel maximum power tracking control system for the direct drive permanent magnet synchronous generator (PMSG) of the wind energy conversion system…

Abstract

Purpose

This study aims to construct a novel maximum power tracking control system for the direct drive permanent magnet synchronous generator (PMSG) of the wind energy conversion system (WECS) to solve the following problems: how to effectively eliminate the system’s model parameter disturbances and speed up the dynamic performance of the system; and how to eliminate harmonics in WECS under different wind speeds.

Design/methodology/approach

To obtain the maximum output power of PMSG at WECS under different wind speeds, the following issues should be considered: (1) how to effectively eliminate the system’s model parameter disturbances and speed up the dynamic performance of the system; and (2) how to suppress system harmonics. For Problem 1, adding dq compensation factors to active disturbance rejection control (ADRC) for the current loop realizes the dq axis decoupling control, which speeds up the dynamic performance of the system. For Problem 2, the resonant controller is introduced into the ADRC for the current loop to suppress harmonic current in WECS under different wind speeds.

Findings

The simulation results demonstrate that the proposed control method is simpler and more reliable than conventional controllers for maximum power tracking.

Originality/value

Compared with traditional controllers, the proposed controller can speed up the dynamic performance of the system and suppress the current harmonic effectively, thus better achieving maximum power tracking.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 3 April 2023

Sebi Neelamkavil Pappachan

This study aims to intend and implement the optimal power flow, where tuning the production cost is done with the inclusion of stochastic wind power and different kinds of…

Abstract

Purpose

This study aims to intend and implement the optimal power flow, where tuning the production cost is done with the inclusion of stochastic wind power and different kinds of flexible AC transmission systems (FACTS) devices. Here, the speed with fitness-based krill herd algorithm (SF-KHA) is adopted for deciding the FACTS devices’ optimal sizing and placement integrated with wind power. Here, the modified SF-KHA optimizes the sizing and location of FACTS devices for attaining the minimum average production cost and real power depletions of the system. Especially, the objective includes reserve cost for overestimation, cost of thermal generation of the wind power, direct cost of scheduled wind power and penalty cost for underestimation. The efficiency of the offered method over several popular optimization algorithms has been done, and the comparison over different algorithms establishes proposed KHA algorithm attains the accurate optimal efficiency for all other algorithms.

Design/methodology/approach

The proposed FACTS devices-based power system with the integration of wind generators is based on the accurate placement and sizing of FACTS devices for decreasing the actual power loss and total production cost of the power system.

Findings

Through the cost function evaluation of the offered SF-KHA, it was noted that the proposed SF-KHA-based power system had secured 13.04% superior to success history-based adaptive differential evolution, 9.09% enhanced than differential evolution, 11.5% better than artificial bee colony algorithm, 15.2% superior to particle swarm optimization and 9.09% improved than flower pollination algorithm.

Originality/value

The proposed power system with the accurate placement and sizing of FACTS devices and wind generator using the suggested SF-KHA was effective when compared with the conventional algorithm-based power systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 June 2023

Haider Jouma Touma, Muhamad Mansor, Muhamad Safwan Abd Rahman, Yong Jia Ying and Hazlie Mokhlis

This study aims to investigate the feasibility of proposed microgrid (MG) that comprises photovoltaic, wind turbines, battery energy storage and diesel generator to supply a…

57

Abstract

Purpose

This study aims to investigate the feasibility of proposed microgrid (MG) that comprises photovoltaic, wind turbines, battery energy storage and diesel generator to supply a residential building in Grindelwald which is chosen as the test location.

Design/methodology/approach

Three operational configurations were used to run the proposed MG. In the first configuration, the electric energy can be vended and procured utterly between the main-grid and MG. In the second configuration, the energy trade was performed within 15 kWh as the maximum allowable limit of energy to purchase and sell. In the third configuration, the system performance in the stand-alone operation mode was investigated. A whale optimization technique is used to determine the optimal size of MG in all proposed configurations. The cost of energy (COE) and other measures are used to evaluate the system performance.

Findings

The obtained results revealed that the first configuration is the most beneficial with COE of 0.253$/KWh and reliable 100%. Furthermore, the whale optimization algorithm is sufficiently feasible as compared to other techniques to apply in the applications of MG.

Originality/value

The value of the proposed research is to investigate to what extend the integration between MG and main-grid is beneficial economically and technically. As opposed to previous research studies that have focused predominantly only on the optimal size of MG.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 24 April 2024

Haider Jouma, Muhamad Mansor, Muhamad Safwan Abd Rahman, Yong Jia Ying and Hazlie Mokhlis

This study aims to investigate the daily performance of the proposed microgrid (MG) that comprises photovoltaic, wind turbines and is connected to the main grid. The load demand…

Abstract

Purpose

This study aims to investigate the daily performance of the proposed microgrid (MG) that comprises photovoltaic, wind turbines and is connected to the main grid. The load demand is a residential area that includes 20 houses.

Design/methodology/approach

The daily operational strategy of the proposed MG allows to vend and procure utterly between the main grid and MG. The smart metre of every consumer provides the supplier with the daily consumption pattern which is amended by demand side management (DSM). The daily operational cost (DOC) CO2 emission and other measures are utilized to evaluate the system performance. A grey wolf optimizer was employed to minimize DOC including the cost of procuring energy from the main grid, the emission cost and the revenue of sold energy to the main grid.

Findings

The obtained results of winter and summer days revealed that DSM significantly improved the system performance from the economic and environmental perspectives. With DSM, DOC on winter day was −26.93 ($/kWh) and on summer day, DOC was 10.59 ($/kWh). While without considering DSM, DOC on winter day was −25.42 ($/kWh) and on summer day DOC was 14.95 ($/kWh).

Originality/value

As opposed to previous research that predominantly addressed the long-term operation, the value of the proposed research is to investigate the short-term operation (24-hour) of MG that copes with vital contingencies associated with selling and procuring energy with the main grid considering the environmental cost. Outstandingly, the proposed research engaged the consumers by smart meters to apply demand-sideDSM, while the previous studies largely focused on supply side management.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Expert briefing
Publication date: 27 June 2023

Investor sentiment has been dented by China’s large production quotas and the threat of substitution in magnet making. However, price-supporting production cuts are possible…

Details

DOI: 10.1108/OXAN-DB280101

ISSN: 2633-304X

Keywords

Geographic
Topical
1 – 10 of 296