Search results

1 – 10 of 24
Article
Publication date: 1 June 2004

Zbigniew Leonowicz

Classical techniques to estimate the spectrum of the multi‐component signal are based on Fourier‐based transformations. The frequency estimates obtained from their spectral peaks…

Abstract

Classical techniques to estimate the spectrum of the multi‐component signal are based on Fourier‐based transformations. The frequency estimates obtained from their spectral peaks are affected by the window length and phase of signal component, thus presenting a large variance even in the absence of noise. The spectrum of the signals is estimated with the help of the Wigner‐Ville distribution and its time‐frequency representation is obtained. For the same purpose, the min‐norm method (subspace method) is used. The accuracy of the tested methods was investigated and compared with the parameters of the frequency estimation via FFT. The proposed methods were also tested with non‐stationary multiple‐component signals occurring during the fault operation of inverter‐fed drives and transmission lines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 23 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 April 2022

Rajesh Babu Damala, Ashish Ranjan Dash and Rajesh Kumar Patnaik

This research paper aims to investigate the change detection filter technique with a decision tree-based event (fault type) classifier for recognizing and categorizing power…

Abstract

Purpose

This research paper aims to investigate the change detection filter technique with a decision tree-based event (fault type) classifier for recognizing and categorizing power system disturbances on the high-voltage DC (HVDC) transmission link.

Design/methodology/approach

A change detection filter is used to the average and differential current components, which detects the point of fault initiation and records a change detection point (CDP). The half-cycle differential and average currents on both sides of the CDP are sent through the signal processing unit, which produces the respective target. The extracted target indices are sent through a decision tree-based fault classifier mechanism for fault classification.

Findings

In comparison with conventional differential current protection systems, the developed framework is faster in fault detection and classification and provides great accuracy. The new technology allows for prompt identification of the fault category, allowing electrical grids to be restored as quickly as possible to minimize economic losses. This novel technology enhances efficiency in terms of reducing computing complexity.

Research limitations/implications

Setting a threshold value for identification is one of the limitations. To bring the designed system into stability condition before creating faults on it is another limitation. Reducing the computational burden is one of the limitations.

Practical implications

Creating a practical system in laboratory is difficult as it is a HVDC transmission line. Apart from that, installing rectifier and converter section for HVDC transmission line is difficult in a laboratory setting.

Originality/value

The suggested scheme’s importance and accuracy have been rigorously validated for the standard HVDC transmission system, subjected to various types of DC fault, and the results show the proposed algorithm would be a feasible alternative to real-time applications.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 November 2017

Misael Lopez-Ramirez, Rene J. Romero-Troncoso, Daniel Moriningo-Sotelo, Oscar Duque-Perez, David Camarena-Martinez and Arturo Garcia-Perez

About 13 to 44 per cent of motor faults are caused by bearing failures in induction motors (IMs), where lubrication plays a significant role in maintaining rotating equipment…

204

Abstract

Purpose

About 13 to 44 per cent of motor faults are caused by bearing failures in induction motors (IMs), where lubrication plays a significant role in maintaining rotating equipment because it minimizes friction and prevents wear by separating parts that move next to each other, and more than 35 per cent of bearing failures can be attributed to improper lubrication. An excessive amount of grease causes the rollers or balls to slide along the race instead of turning, and the grease will actually churn. This churning action will eventually wear down the base oil of the grease and all that will be left to lubricate the bearing is a thickener system with little or no lubricating properties. The heat generated from the churning, insufficient lubricating oil will begin to harden the grease, and this will prevent any new grease added to the bearing from reaching the rolling elements, with the consequence of bearing failure and equipment downtime. Regarding the case of grease excess in bearings, this case has not been sufficiently studied. This work aims to present an effective methodology applied to the detection and automatic classification of mechanical bearing faults and bearing excessively lubricated conditions in an IM through the Margenau-Hill distribution (MHD) and artificial neural networks (ANNs), where the obtained results demonstrate the correct classification of the studied cases.

Design/methodology/approach

This work proposed an effective methodology applied to the detection and automatic classification of mechanical bearing faults and bearing excessively lubricated conditions in an IM through the MHD and ANNs.

Findings

In this paper, three cases of study for a bearing in an IM are studied, detected and classified correctly by combining some methods. The marginal frequency is obtained from the MHD, which in turn is achieved from the stator current signal, and a total of six features are estimated from the power spectrum, and these features are forwarded to the designed ANN with three output neurons, where each one represents a condition in the IM: healthy bearing, mechanical bearing fault and excessively lubricated bearing.

Practical implications

The proposed methodology can be applied to other applications; it could be useful to use a time–frequency representation through the MHD for obtaining the energy density distribution of the signal frequency components through time for analysis, evaluation and identification of faults or conditions in the IM for example; therefore, the proposed methodology has a generalized nature that allows its application for detecting other conditions or even multiple conditions under different working conditions by a proper calibration.

Originality/value

The lubrication plays a significant role in maintaining rotating equipment because it minimizes friction and prevents wear by separating parts that move next to each other, and more than 35 per cent of bearing failures can be attributed to improper lubrication and it negatively affects the efficiency of the motor, resulting in higher operating costs. Therefore, in this work, a new methodology is proposed for the detection and automatic classification of mechanical bearing faults and bearing excessively lubricated conditions in an IM through the MHD and ANNs. The proposed methodology uses a total of six features estimated from the power spectrum, and these features are sent to the designed ANN with three output neurons, where each one represents a condition in the IM: healthy bearing, mechanical bearing fault and excessively lubricated bearing. From the obtained results, it was demonstrated that the proposed approach achieves higher classification performance, compared to short-time Fourier transform, Gabor transform and Wigner-Ville distribution methods, allowing to identify mechanical bearing faults and bearing excessively lubricated conditions in an IM, with a remarkable 100 per cent effectiveness during classification for treated cases. Also, the proposed methodology has a generalized nature that allows its application for detecting other conditions or even multiple conditions under different working conditions by a proper calibration.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 May 2013

R. Gouws

In this paper, condition monitoring of the internal parts of a radial active magnetic bearing (AMB) system is performed by means of Cepstrum analysis, Wigner-Ville Distributions

Abstract

In this paper, condition monitoring of the internal parts of a radial active magnetic bearing (AMB) system is performed by means of Cepstrum analysis, Wigner-Ville Distributions (WVD) and enveloped Equi-Sampled Discrete Fourier transforms (ESDFT). Sensor faults, power amplifier failures and controller faults were induced in both the simulation and physical AMB system. Condition monitoring by means of the abovementioned techniques were then performed on the displacement and current signals of the simulation and physical AMB system. Results were compared and conclusions were made on how effective Cepstrum analysis, WVD and enveloped ESDFT were on the faults induced on the AMB system.

Details

World Journal of Engineering, vol. 10 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 April 2021

Huiliang Cao, Rang Cui, Wei Liu, Tiancheng Ma, Zekai Zhang, Chong Shen and Yunbo Shi

To reduce the influence of temperature on MEMS gyroscope, this paper aims to propose a temperature drift compensation method based on variational modal decomposition (VMD)…

Abstract

Purpose

To reduce the influence of temperature on MEMS gyroscope, this paper aims to propose a temperature drift compensation method based on variational modal decomposition (VMD), time-frequency peak filter (TFPF), mind evolutionary algorithm (MEA) and BP neural network.

Design/methodology/approach

First, VMD decomposes gyro’s temperature drift sequence to obtain multiple intrinsic mode functions (IMF) with different center frequencies and then Sample entropy calculates, according to the complexity of the signals, they are divided into three categories, namely, noise signals, mixed signals and temperature drift signals. Then, TFPF denoises the mixed-signal, the noise signal is directly removed and the denoised sub-sequence is reconstructed, which is used as training data to train the MEA optimized BP to obtain a temperature drift compensation model. Finally, the gyro’s temperature characteristic sequence is processed by the trained model.

Findings

The experimental result proved the superiority of this method, the bias stability value of the compensation signal is 1.279 × 10–3°/h and the angular velocity random walk value is 2.132 × 10–5°/h/vHz, which is improved compared to the 3.361°/h and 1.673 × 10–2°/h/vHz of the original output signal of the gyro.

Originality/value

This study proposes a multi-dimensional processing method, which treats different noises separately, effectively protects the low-frequency characteristics and provides a high-precision training set for drift modeling. TFPF can be optimized by SEVMD parallel processing in reducing noise and retaining static characteristics, MEA algorithm can search for better threshold and connection weight of BP network and improve the model’s compensation effect.

Article
Publication date: 24 September 2021

Qiang Wang, Chen Meng and Cheng Wang

This study aims to reveal the essential characteristics of nonstationary signals and explore the high-concentration representation in the joint time–frequency (TF) plane.

Abstract

Purpose

This study aims to reveal the essential characteristics of nonstationary signals and explore the high-concentration representation in the joint time–frequency (TF) plane.

Design/methodology/approach

In this paper, the authors consider the effective TF analysis for nonstationary signals consisting of multiple components.

Findings

To make it, the authors propose the combined multi-window Gabor transform (CMGT) under the scheme of multi-window Gabor transform by introducing the combination operator. The authors establish the completeness utilizing the discrete piecewise Zak transform and provide the perfect-reconstruction conditions with respect to combined TF coefficients. The high-concentration is achieved by optimization. The authors establish the optimization function with considerations of TF concentration and computational complexity. Based on Bergman formulation, the iteration process is further analyzed to obtain the optimal solution.

Originality/value

With numerical experiments, it is verified that the proposed CMGT performs better in TF analysis for multi-component nonstationary signals.

Details

Engineering Computations, vol. 39 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1997

Zhiyue Lin

Provides an introduction to the field of time‐frequency analysis by reviewing four important and popular used time‐frequency analysis methods with focus on the principles and…

1017

Abstract

Provides an introduction to the field of time‐frequency analysis by reviewing four important and popular used time‐frequency analysis methods with focus on the principles and implementation. The basic idea of time‐frequency analysis is to understand and describe situations where the frequency content of a signal is changing in time. Although time‐frequency analysis had its origin almost 50 years ago, significant advances have occurred in the past 15 years or so. Recently, the time‐frequency representation has received considerable attention as a powerful tool for analysing a variety of signals and systems.

Details

Sensor Review, vol. 17 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 December 2005

Qiang Miao and Viliam Makis

To investigate wavelet modulus maxima distribution (MMD) in machinery condition monitoring and extract a parameter that can give a quantitative description of machinery‐operating…

Abstract

Purpose

To investigate wavelet modulus maxima distribution (MMD) in machinery condition monitoring and extract a parameter that can give a quantitative description of machinery‐operating status.

Design/methodology/approach

Signal decomposition technique is applied to extract gear motion signal and then wavelet transform modulus maxima are utilized to define fault growth parameter (FGP).

Findings

MMD were proposed and the distribution used to derive an EWMA statistic representing machinery fault growth. A comparison with other research works indicates better performance of this parameter.

Practical implications

This paper presents an innovative scheme for the machinery condition monitoring, on the basis of wavelet modulus maxima representation. The definition of MMD can be utilized to derive a parameter that describes the operating status of machinery. This parameter is load‐independent so that it demonstrates better performance when compared with other research works. Further, the MMD may be treated as input of condition classification system in the future work.

Originality/value

The idea for this paper stems from wavelet modulus maxima representation, whilst the application in vibration signal analysis is new. It was found that, by applying this approach, the occurrence of failure is correctly identified and the proposed EWMA FGP is independent of the load applied, which is a very important property in machinery condition monitoring and fault detection.

Details

Journal of Quality in Maintenance Engineering, vol. 11 no. 4
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 23 September 2019

H.S. Kumar, P. Srinivasa Pai and Sriram N. S

The purpose of this paper is to classify different conditions of the rolling element bearing (REB) using vibration signals acquired from a customized bearing test rig.

Abstract

Purpose

The purpose of this paper is to classify different conditions of the rolling element bearing (REB) using vibration signals acquired from a customized bearing test rig.

Design/methodology/approach

An effort has been made to develop health index (HI) based on singular values of the statistical features to classify different conditions of the REB. The vibration signals from the normal bearing (N), bearing with defect on ball (B), bearing with defect on inner race (IR) and bearing with defect on outer race (OR) have been acquired from a customized bearing test rig under variable load and speed conditions. These signals were subjected to “modified kurtosis hybrid thresholding rule” (MKHTR)-based denoising. The denoised signals were decomposed using discrete wavelet transform. A total of 17 statistical features have been extracted from the wavelet coefficients of the decomposed signal.

Findings

Singular values of the statistical features can be effectively used for REB classification.

Practical implications

REB are critical components of rotary machinery right across the industrial sectors. It is a well-known fact that critical bearing failures causes major breakdowns resulting in untold and most expensive downtimes that should be avoided at all costs. Hence, intelligently based bearing failure diagnosis and prognosis should be an integral part of the asset maintenance and management activity in any industry using rotary machines.

Originality/value

It is found that singular values of the statistical features exhibit a constant value and accordingly can be assigned to each type of bearing fault and can be used for fault characterization in practical applications. The effectiveness of this index has been established by applying this to data from Case Western Reserve University data base which is a standard bench mark data for this application. HIs minimizes the computation time when compared to fault diagnosis using soft computing techniques.

Details

Journal of Quality in Maintenance Engineering, vol. 26 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 1 October 2018

Vinod Nistane and Suraj Harsha

In rotary machines, the bearing failure is one of the major causes of the breakdown of machinery. The bearing degradation monitoring is a great anxiety for the prevention of…

Abstract

Purpose

In rotary machines, the bearing failure is one of the major causes of the breakdown of machinery. The bearing degradation monitoring is a great anxiety for the prevention of bearing failures. This paper aims to present a combination of the stationary wavelet decomposition and extra-trees regression (ETR) for the evaluation of bearing degradation.

Design/methodology/approach

The higher order cumulants features are extracted from the bearing vibration signals by using the stationary wavelet decomposition (stationary wavelet transform [SWT]). The extracted features are then subjected to the ETR for obtaining normal and failure state. A dominance level curve build using the dissimilarity data of test object and retained as health degradation indicator for the evaluation of bearing health.

Findings

Experiment conducts to verify and assess the effectiveness of ETR for the evaluation of performance of bearing degradation. To justify the preeminence of recommended approach, it is compared with the performance of random forest regression and multi-layer perceptron regression.

Originality/value

The experimental results indicated that the presently adopted method shows better performance for detecting the degradation more accurately at early stage. Furthermore, the diagnostics and prognostics have been getting much attention in the field of vibration, and it plays a significant role to avoid accidents.

1 – 10 of 24