Search results

1 – 10 of 354
Article
Publication date: 8 May 2018

Zeeshan Ahmad, Yaoliang Song and Qiang Du

Direction-of-arrival (DOA) estimation for wideband sources has attracted a growing interest in the recent decade because wideband sources are incorporated in many real-world…

Abstract

Purpose

Direction-of-arrival (DOA) estimation for wideband sources has attracted a growing interest in the recent decade because wideband sources are incorporated in many real-world applications such as communication systems, radar, sonar and acoustics. One way to estimate the DOAs of wideband signals is to decompose it into narrowband signals using discrete Fourier transform (DFT) and then apply well-established narrowband algorithms to each signal. Afterwards, results are averaged to yield the final DOAs. These techniques require scanning the full band of wideband sources, ultimately degrading the resolution and increasing complexity. This paper aims to propose a new DOA estimation methodology to solve these problems.

Design/methodology/approach

The new DOA estimation methodology is based on incoherent signal subspace method (ISSM). The proposed approach presents a criterion to select a single sub-band of the selected narrowband signals instead of scanning the whole signal spectrum. Then, the DOAs of wideband signals are estimated using the selected sub-band. Therefore, it is named as single sub-band (SSB)-ISSM.

Findings

The computational complexity of the proposed method is much lower than that of traditional DFT-based methods. The effectiveness and advantages of the proposed methodology are theoretically investigated, and computational complexity is also addressed.

Originality/value

To verify the theoretical analysis, computer simulations are implemented, and comparisons with other algorithms are made. The simulation results show that the proposed method achieves better performance and accurately estimates the DOAs of wideband sources.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 November 2021

Hanisah Mohd Zali, Mohd Khairil Adzhar Mahmood, Idnin Pasya, Miyuki Hirose and Nurulazlina Ramli

Utilization of electromagnetic wave (EMW) sensors in an underwater environment has the potential to increase the data rate compared to acoustic-based sensors because of the…

Abstract

Purpose

Utilization of electromagnetic wave (EMW) sensors in an underwater environment has the potential to increase the data rate compared to acoustic-based sensors because of the ability to use larger signal bandwidth. Nevertheless, EMW signals has the drawback of large signal attenuation in underwater, attributed to the high relative permittivity and conductivity of water compared to the atmosphere, hence employment of wide signal bandwidth is necessary to balance the data rate-attenuation trade-off. The purpose of this paper is to analyze the characteristics of both narrowband and wideband EMW signal propagation underwater and devise a path loss model for both cases.

Design/methodology/approach

Path loss measurement was conducted using a point-to-point configuration in a laboratory water tank while transmitting narrowband and wideband signals between a pair of wideband underwater antennas. The wideband underwater antennas use buffer-layer structures as the impedance matching layer to optimize the antenna performance when operating underwater. The path loss for narrowband signal was modeled using a multi-layer propagation equation in lossy medium considering losses at the medium boundaries. For the case of the wideband signal, a modified version of the model introducing power integration over bandwidth is adopted. These models were formulated through numerical simulations and verified by measurements.

Findings

The measured narrowband path loss marked an 80 dB attenuation using 800 MHz at 2 m distance. The proposed narrowband model agrees well with the measurements, with approximately 3 dB modeling error. Utilization of the proposed wideband path loss model resulted in a reduction of the gradient of the path loss curve compared to the case of the narrowband signal. The measured wideband path loss at 2 m distance underwater was approximately −65 dB, which has been shown to enable a working signal-to-noise ratio of 15 dB. This proves the potential of realizing high data rate transmission using the wideband signal.

Originality/value

The paper proposed a wideband propagation model for an underwater EMW sensor network, using power integration over bandwidth. The effectiveness of using wideband EMW signals in reducing path loss is highlighted, which is seldom discussed in the literature. This result will be of useful reference for using wideband signals in designing a high data rate transmission system in underwater wireless sensor networks, for example, in link budget, performance estimation and parameter design of suitable transmission scheme.

Details

Sensor Review, vol. 42 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 June 2009

Kate A. Remley, Galen Koepke, Chris Holloway, Dennis Camell and Chriss Grosvenor

The purpose of this paper is to describe common methods for evaluating the performance of wireless devices such as wireless sensors in harsh radio environments.

Abstract

Purpose

The purpose of this paper is to describe common methods for evaluating the performance of wireless devices such as wireless sensors in harsh radio environments.

Design/methodology/approach

The paper describes how measurements of real‐world propagation environments can be used to support the evaluation process, then presents representative measurement data from multipath environments where sensor networks are likely to be deployed: a fixed‐infrastructure, process‐control environment (here an oil refinery), and a heavy industrial environment (here an automotive assembly plant).

Findings

Results on the characterization of multipath in the propagation channel are summarized and how these results may be used in the performance evaluation of sensor networks is discussed.

Originality/value

The paper describes measurement results from environments where little open‐literature data exists on point‐to‐point propagation, specifically high‐multipath environments. These highly reflective scenarios can present difficulties for deployment of sensor networks.

Details

Sensor Review, vol. 29 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 June 2003

Wang Jianqi, Cao Xibin and Sun Zhaowei

The measurement of geomagnetic field can provide a reliable and economical basis for attitude and orbit information of low earth orbiting satellite. Because the earth's magnetic…

1225

Abstract

The measurement of geomagnetic field can provide a reliable and economical basis for attitude and orbit information of low earth orbiting satellite. Because the earth's magnetic field is a function of position, and its measurement on the orbit are fully observable, orbit estimation can be obtained using extend Kalman filter (EKF) algorithm. With the assistant of angle velocity information from gyro measurement, attitude estimation can also be obtained. At the same time, gyro drift rate estimation is a part of the filter output. Although orbit and attitude determination are independent of each other, the filter can give the orbit and attitude estimation at the same time. The results of the numerical test show that a signal EKF can estimate both orbit and attitude by using magnetometer and gyro measurement only. The accuracy, usually is sufficient for low earth orbiting satellites.

Details

Aircraft Engineering and Aerospace Technology, vol. 75 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 5 May 2015

Yijiu Zhao, Houjun Wang and Zhijian Dai

The purpose of this paper is to present a model calibration technique for modulated wideband converter (MWC) with non-ideal lowpass filter. Without making any change to the system…

Abstract

Purpose

The purpose of this paper is to present a model calibration technique for modulated wideband converter (MWC) with non-ideal lowpass filter. Without making any change to the system architecture, at the cost of a moderate oversampling, the calibrated system can perform as the system with ideal lowpass filter.

Design/methodology/approach

A known test sparse signal is used to approximate the finite impulse response (FIR) of the practical non-ideal lowpass filter. Based on the approximated FIR filter, a digital compensation filter is designed to calibrate the practical filter. The calibrated filter can meet the perfect reconstruction condition. The non-ideal sub-Nyquist samples are filtered by a compensation filter.

Findings

Experimental results indicate that, by calibrating the MWC with the proposed algorithm, the impaction of non-ideal lowpass filter could be avoided. The performance of signal reconstruction could be improved significantly.

Originality/value

Without making any change to the MWC architecture, the proposed algorithm can calibrated the non-ideal lowpass filter. By filtering the non-ideal sub-Nyquist samples with the designed compensation filter, the original signal could be reconstructed with high accuracy.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2014

Mustapha Djeddou, Hichem Zeher and Younes Nekachtali

– The paper aims to propose a new method for estimating the time of arrival (TOA) of ultra-wideband (UWB) signals under IEEE 802.15.4a multipath channel model.

Abstract

Purpose

The paper aims to propose a new method for estimating the time of arrival (TOA) of ultra-wideband (UWB) signals under IEEE 802.15.4a multipath channel model.

Design/methodology/approach

The proposed approach is based on a proportionality test and consists in finding out whether two autoregressive (AR) processes, modeling two frames, are proportional or not. The latter operation uses a distance to measure the proportionality between the two AR processes.

Findings

The developed technique may be used in two ways, sample-by-sample or block-by-block, according to the required ranging accuracy. It is important to note that the method offers flexibility between the computational load and the needed estimation accuracy. Moreover, the proposed method uses a threshold that is derived analytically according to a preset false alarm probability.

Practical implications

Simulation experiments are conducted to assess the performance of the new TOA estimation algorithm. Thereby, the comparison is done against the well-known CLEAN algorithm for a sample-by-sample based TOA estimation and against three energy detector based receiver algorithms. The obtained results highlight the effectiveness of the developed approach.

Originality/value

The developed TOA estimation algorithm is completely different from other techniques in the literature, and it is based on a proportionality test between two sliding frames. These latter are modeled by two AR processes. Then a distance measure is used to check whether or not the power spectral densities are proportional.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 March 2020

Min Liu, Panpan Xu, Jincan Zhang, Bo Liu and Liwen Zhang

Power amplifiers (PAs) play an important role in wireless communications because they dominate system performance. High-linearity broadband PAs are of great value for potential…

Abstract

Purpose

Power amplifiers (PAs) play an important role in wireless communications because they dominate system performance. High-linearity broadband PAs are of great value for potential use in multi-band system implementation. The purpose of this paper is to present a cascode power amplifier architecture to achieve high power and high efficiency requirements for 4.2∼5.4 GHz applications.

Design/methodology/approach

A common emitter (CE) configuration with a stacked common base configuration of heterojunction bipolar transistor (HBT) is used to achieve high power. T-type matching network is used as input matching network. To increase the bandwidth, the output matching networks are implemented using the two L-networks.

Findings

By using the proposed method, the stacked PA demonstrates a maximum saturated output power of 26.2 dBm, a compact chip size of 1.17 × 0.59 mm2 and a maximum power-added efficiency of 46.3 per cent. The PA shows a wideband small signal gain with less than 3 dB variation over working frequency. The saturated output power of the proposed PA is higher than 25 dBm between 4.2 and 5.4 GHz.

Originality/value

The technology adopted for the design of the 4.2-to-5.4 GHz stacked PA is the 2-µm gallium arsenide HBT process. Based on the proposed method, a better power performance of 3 dB improvement can be achieved as compared with the conventional CE or common-source amplifier because of high output stacking impedance.

Details

Circuit World, vol. 46 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 October 1997

Tony Cawkell

The writer of a review article in the IT area depends on a variety of information sources containing authoritative material, hyped‐up reports, or even partial or pure fiction…

Abstract

The writer of a review article in the IT area depends on a variety of information sources containing authoritative material, hyped‐up reports, or even partial or pure fiction. Sometimes articles are biased or the author has a particular axe to grind — for instance the person is associated with a company and the article is no more than a dressed up sales piece. Academics are usually reliable — although unlikely to damn themselves with faint praise if the next grant is round the corner. I will try to exercise good judgement when assessing my information sources, supressing my various prejudices if possible. But what is meant by the word new? For the purposes of this article ATM (Asynchronous Transfer Mode) protocol (rules) and ATM switches in broadband networks, and aspects of Cable‐TV and cable modems have received a lot of exposure. They will not be discussed here. However, there is much interest in the contest between fibreoptic systems to the home and the conversion of telephone lines to wideband lines. These topics will be discussed.

Details

Aslib Proceedings, vol. 49 no. 10
Type: Research Article
ISSN: 0001-253X

Article
Publication date: 5 December 2019

Bo Cao, Shibo Wang, Shirong Ge, Wanli Liu, Shijia Wang and Shixue Yi

Wireless network localization technology is very popular in recent years and has attracted worldwide attention. The purpose of this paper is to improve the localization accuracy…

Abstract

Purpose

Wireless network localization technology is very popular in recent years and has attracted worldwide attention. The purpose of this paper is to improve the localization accuracy of ultra-wideband (UWB) with lower localization error taking into consideration the special real environment with the closed long and narrow space.

Design/methodology/approach

The principle of multidimensional scaling (MDS), particle swarm optimization (PSO) and Taylor series expansion algorithm (Taylor-D) were introduced. A novel positioning algorithm, MDS-PSO-Taylor was proposed to minimize the localization error. MDS-PSO algorithm provided a more accurate preliminary coordinate by applying the PSO algorithm so that the Taylor-D was used for further enhancing the localization accuracy.

Findings

Experimental results manifested that the proposed algorithm, providing small localization error value and higher positioning accuracy, can effectively reduce errors and achieve better performance in terms of the considerable improvement of localization accuracy.

Originality/value

The presented study with the real environment test attempts to demonstrate the proposed algorithm is hopeful to be applied to the underground environment for in the future.

Details

Sensor Review, vol. 40 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 March 1997

Ivars Bilinskis and Gerald Cain

Addresses the problem of full digital processing of sensor signals at frequencies in the microwave and radio frequency range. Discusses advantages and drawbacks of the emerging…

307

Abstract

Addresses the problem of full digital processing of sensor signals at frequencies in the microwave and radio frequency range. Discusses advantages and drawbacks of the emerging digital alias‐free signal processing technology considering it as a new DSP tool prospective for achieving a breakthrough in DSP theory and techniques leading to a stepwise enlarging of the DSP application frequency range.

Details

Sensor Review, vol. 17 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 354