Search results

1 – 10 of 21
Article
Publication date: 23 January 2020

Qianqian Zhang, Yezhuo Li, Yan-An Yao and Ruiming Li

The purpose of this paper is to propose a deformable two-wheel-like mobile mechanism based on overconstrained mechanism, with the abilities of fast rolling and obstacle…

Abstract

Purpose

The purpose of this paper is to propose a deformable two-wheel-like mobile mechanism based on overconstrained mechanism, with the abilities of fast rolling and obstacle surmounting. The drive torque of the multi-mode motions is generated by self-deformation. Moreover, the analyses of feasibility and locomotivity of two mobile modes are presented.

Design/methodology/approach

The main body of the two-wheel-like mobile mechanism is a kind of centrally driven 4 R linkages. The mobile mechanism can achieve the capabilities of fast rolling and obstacle surmounting through integrating two mobile modes (spherical-like rolling mode and polyhedral-like obstacle-surmounting mode) and can switch to the corresponding mode to move or surmount obstacles. The mobility and kinematics of the mobile modes are analyzed.

Findings

Based on the results of kinematics analysis and dynamics analysis of the wheel-like mechanism, the spherical-like rolling mode has the capability of fast rolling, and the polyhedral-like obstacle-surmounting mode has the capability of surmounting different obstacle heights by two submodes (quasi-static obstacle-surmounting submode and dynamic obstacle-surmounting submode). The proposed concept is verified by experiments on a physical prototype.

Originality/value

The work presented in this paper is a novel exploration to apply bar linkages in the field of scout. The two-wheel-like mobile mechanism improves the torque imbalance of bar linkages by centrally driven method, removes the rear support structures of the traditional two-wheeled mechanisms by self-deformation and increases the height of obstacle surmounting by mode switching angle.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 31 May 2022

Junlin Cheng, Peiyu Ma, Qiang Ruan, Yezhuo Li and Qianqian Zhang

The purpose of this paper is to propose an overall deformation rolling mechanism based on double four-link mechanism. The double quadrilateral mobile mechanism (DQMM) has two…

Abstract

Purpose

The purpose of this paper is to propose an overall deformation rolling mechanism based on double four-link mechanism. The double quadrilateral mobile mechanism (DQMM) has two switchable working modes which can be used to traverse different terrains or climb over obstacles.

Design/methodology/approach

The main body of the DQMM is composed of a double four-link mechanism which sharing a public link and two symmetrical steering platforms which placed at both ends of the four-link mechanism. The steering platforms give the DQMM not only steering ability but also reconnaissance ability which can be achieved by carrying sensors such as cameras on steering platforms. By controlling the deformation of the DQMM, it can switch between two working modes (tracked rolling mode and obstacle-climbing mode) to achieve the functions of rolling and obstacle-climbing. Dynamic simulation model was established to verify the feasibility.

Findings

Based on the kinematics analysis and simulation results of the DQMM, its moving function is realized by the tracked rolling mode, and the obstacle-climbing mode is used to climb over obstacles in structured terrains such as continuous stairs. The feasibility of the two working modes is verified on a physical prototype.

Originality/value

The work of this paper is a new exploration of applying “overall closed moving linkages mechanism” to the area of small mobile mechanisms. The adaptability of different terrains and the ability of obstacle-climbing are improved by the combination of multi-modes.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 March 2022

Yangyang Dong, Tongle Zhang, Shaojie Han, Yipan Guo, Bo Zeng, Yongbin Wang and Zijian Zhang

Spherical robot plays an essential role in the field of mobile robot because of its unique shape and omni-directional mobility, especially in the application of planet detection…

Abstract

Purpose

Spherical robot plays an essential role in the field of mobile robot because of its unique shape and omni-directional mobility, especially in the application of planet detection. Although spherical robot has many advantages over leg robot, its obstacle climbing performance is still not satisfactory, that is exactly the motivation of this paper. The purpose of this paper is to propose a high-performance hopping mechanism for spherical robot, which can adapt to different terrain and effectively cross obstacles.

Design/methodology/approach

The hopping system uses torque spring as part of the energy storage mechanism, and converts the kinetic energy of rotation into elastic potential energy with a particularly designed turntable. Moreover, the track of the turntable, based on the Archimedes spiral principle, has the attributes of equidistance and equivelocity that enable better stability of energy storage process.

Findings

Experiments show that the proposed hopping mechanism can make a 250 g spherical robot jump up to 58 cm with the take-off angle of 60°. Finally, the influence of friction and take-off angle on the hopping height and distance of the robot is also analyzed, which provides a prior guidance for optimizing its jumping process.

Originality/value

This paper shows how to easily design a lightweight, compact and embedded spring hopping structure so that a spherical hopping robot with detection ability can be developed.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 May 2021

Zhirui Wang, Yezhuo Li, Bo Su, Lei Jiang, Ziming Zhao and Yan-An Yao

The purpose of this paper is to introduce a tetrahedral mobile robot with only revolute joints (TMRR). By using rotation actuators, the mechanism of the robot gains favorable…

Abstract

Purpose

The purpose of this paper is to introduce a tetrahedral mobile robot with only revolute joints (TMRR). By using rotation actuators, the mechanism of the robot gains favorable working space and eliminates the engineering difficulties caused by the multilevel extension compared with liner actuators. Furthermore, the rolling locomotion is improved to reduce displacement error based on dynamics analysis.

Design/methodology/approach

The main body of deforming mechanism with a tetrahedral exterior shape is composed of four vertexes and six RRR chains. The mobile robot can achieve the rolling locomotion and reach any position on the ground by orderly driving the rotation actuators. The global kinematics of the mobile modes are analyzed. Dynamics analysis of the robot falling process is carried out during the rolling locomotion, and the rolling locomotion is improved by reducing the collision impulse along with the moving direction.

Findings

Based on global kinematics analysis of TMRR, the robot can realize the continuous mobility based on rolling gait planning. The main cause of robot displacement error and the corresponding improvement locomotion are gained through dynamic analysis. The results of the theoretical analysis are verified by experiments on a physical prototype.

Originality/value

The work introduced in this paper is a novel exploration of applying the mechanism with only revolute joints to the field of tetrahedral rolling robots. It is also an attempt to use the improved rolling locomotion making this kind of mobile robot more practical. Meanwhile, the reasonable engineering structure of the robot provides feasibility for load carrying.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 March 2016

Chang-Hyuk Lee, Kyung-min Lee, Jehong Yoo, In-su Kim and Young-bong Bang

The purpose of this paper is to describe a compact wheelchair, which has two 3-degrees of freedom (DOF) legs and a 1-DOF base (the total DOF of the leg system is 7) for…

Abstract

Purpose

The purpose of this paper is to describe a compact wheelchair, which has two 3-degrees of freedom (DOF) legs and a 1-DOF base (the total DOF of the leg system is 7) for stair-climbing, and wheels for flat surface driving.

Design/methodology/approach

The proposed wheelchair climbs stairs using the two 3-DOF legs with boomerang-shaped feet. The leg mechanisms are folded into the compact wheelchair body when the wheelchair moves over flat surfaces. The authors also propose a simple estimation method of stair shape using laser distance sensors, and a dual motor driving system to increase joint power.

Findings

The proposed wheelchair can climb arbitrary height and width stairs by itself, even when they are slightly curved. During climbing, the trajectory of the seat position is linear to guarantee the comfort of rider, and the wheelchair always keeps a stable condition to ensure the stability in an emergency stop.

Originality/value

The wheelchair mechanism with foldable legs and driving wheels enables smooth stair climbing, efficient flat surface driving and additional useful motions such as standing and tilting.

Details

Industrial Robot: An International Journal, vol. 43 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 February 2023

Houda Mahboub and Hicham Sadok

The purpose of this article is to articulate a view of digital transformation (DT) implementation and proposes a framework linking digital transformation strategy (DTS) and…

Abstract

Purpose

The purpose of this article is to articulate a view of digital transformation (DT) implementation and proposes a framework linking digital transformation strategy (DTS) and business model innovation (BMI), often treated separately.

Design/methodology/approach

Through the analysis of the DTS model and the literature of the BMI model, this work proposes, in an inductive methodological approach, a conceptual framework articulating these two items to be put in place for a better implementation of the DT of companies.

Findings

To successfully implement the DT, managers need to master the art of contextualization. It is not always a matter of radical changes and reinventing the whole strategy and business model, but knowing how to update the existing one with the new changes and information. Moreover, an optimal design for implementing DT requires alignment between the strategic and operational aspects to achieve the proposition, the creation and the value capture. In addition, the link between the DTS and the BMI should be iterative and continuous, respecting a Deming wheel-like approach.

Practical implications

The outcome of this paper can serve as a reference and checklist guiding enterprises to succeed in their DT implementation project. In this regard, this work presents a DTS model to implement the DT, and a BMI instruction but also clarifies how to ensure consistency between all the models to guarantee the DT project alignment and therefore organizational survival.

Originality/value

This work proposes an original conceptual framework linking the DTS and BMI through their building blocks to assure a successful DT implementation.

Details

Nankai Business Review International, vol. 14 no. 1
Type: Research Article
ISSN: 2040-8749

Keywords

Article
Publication date: 1 June 2005

Dragos Golubovic and Huosheng Hu

This paper presents an evolutionary algorithm (EA) for Sony legged robots to learn good walking behaviours with little or no interaction with the designers. Once the learning…

Abstract

Purpose

This paper presents an evolutionary algorithm (EA) for Sony legged robots to learn good walking behaviours with little or no interaction with the designers. Once the learning method is put into place, the module can learn through its interaction with the real world.

Design/methodology/approach

An EA for developing locomotion gaits of quadruped walking robots is presented in this paper. It is based on a hybrid approach that changes the probability of genetic operators in respect to the performance of the operator's offspring.

Findings

The mutating and combination behaviours of the genetic algorithms allow the process to develop a useful behaviour over time. The resulting gait from this training proved to be a better solution than the non‐interference training for movements over all types of surfaces, pointing to a local optima being discovered in the non‐environmental interference situation.

Research limitations/implications

The behaviour of these algorithms is stochastic so that they may potentially present different solutions in different runs of the same algorithm. The mechanism described here has several features that should be noted. It allows rapid parameterisation of operator probabilities across the range of potential genetic algorithms and operator set. It is tailored to a steady state reproduction scheme. It would not be literally applicable to problems with noisy evaluation functions.

Originality/value

Provides novel application of genetic algorithms to a potentially practical application area.

Details

Industrial Robot: An International Journal, vol. 32 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Abstract

Details

Knowledge Management as a Strategic Asset
Type: Book
ISBN: 978-1-78769-662-4

Article
Publication date: 1 February 1999

Jon‐Arild Johanessen, Johan Olaisen and Bjørn Olsen

In this article we will discuss the link between systemic thinking, organizational learning and knowledge management. We will develop a conceptual model to illustrate and explain…

2487

Abstract

In this article we will discuss the link between systemic thinking, organizational learning and knowledge management. We will develop a conceptual model to illustrate and explain this link, which will be further discussed throughout the article. The main entities of this model are: emphasis on internal motivation, relations in and among systems, in addition to the development of vision, generation of ideas and creativity. The philosophical basis for this model is systemic thinking. We will thus explain the meaning of this way of thinking, before we discuss the individual elements of the conceptual model.

Details

Kybernetes, vol. 28 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 17 August 2015

Wei Wang, Shilin Wu, Peihua Zhu and Xuepeng Li

The paper aims to present a new thought for design of a thrown robot based on flexible structures. The aim of the design is to reduce the weight and improve the anti-impact…

Abstract

Purpose

The paper aims to present a new thought for design of a thrown robot based on flexible structures. The aim of the design is to reduce the weight and improve the anti-impact capability for mini thrown robot.

Design/methodology/approach

A mass-spring wheeled robot model is proposed and an impact analysis is given in this paper. Some principia were derived for configuration design and material choice to get a light and robust thrown reconnaissance robot. Based on the theoretical analysis, flexible elements like flexure hinges or rubber shell were utilized to build two generation of robots that both showed excellent performances of anti-impact ability.

Findings

A second-generation thrown robot (2,050 g) was developed, which could survive dropping from the height of 6 m more than 10 times without apparent damage.

Originality/value

The method based on the flexible structure provides the thrown robot with high survivability from impact, as well as light weight. It can be used in the design of the mini thrown reconnaissance robot at low cost.

Details

Industrial Robot: An International Journal, vol. 42 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 21