Search results

1 – 4 of 4
Content available
Book part
Publication date: 13 September 2018

Abstract

Details

Unmaking Waste in Production and Consumption: Towards the Circular Economy
Type: Book
ISBN: 978-1-78714-620-4

Book part
Publication date: 12 July 2021

Mohd Fadhli Abd Rashid, Noraliani Alias, Kamarudin Ahmad, Radzuan Sa’ari, Frank Tsung-Chen Tsai, Mohd Zamri Ramli and Zulkiflee Ibrahim

The impact of climate change towards water surface resources is crucial, particularly in developing and non-developing countries. Groundwater as a main water resource is thus an…

Abstract

The impact of climate change towards water surface resources is crucial, particularly in developing and non-developing countries. Groundwater as a main water resource is thus an essential. However, contamination due to hydrocarbon spills affects the groundwater as a water resource, especially as a main source of drinking water. This chapter investigates the light non-aqueous phase liquid (LNAPL) penetrations in double-porosity soil with different moisture contents and with or without vibration impact. It also explains the LNAPL penetration phenomena by employing image analysis. The physical laboratory experiments were implemented using an acrylic cylinder, a mirror, toluene and a Nikon D90 DSLR digital camera. Prepared soil was poured in an acrylic cylinder and compressed with compressor until it became 10 cm in height. LNAPL was then poured instantaneously onto the acrylic cylinder that was filled with soil sample. The LNAPL penetration patterns were recorded and monitored using a Nikon D90 DSLR digital camera. The processing technique was conducted at predetermined time intervals using Surfer software and Matlab routine to plot the LNAPL pattern. The results showed that a higher penetration rate of LNAPL occurred with higher moisture content and without vibration impact. The penetration time for LNAPL to reach the bottom of the soil sample was found to be longer for the soil that had low moisture content and with vibration impact.

Details

Water Management and Sustainability in Asia
Type: Book
ISBN: 978-1-80071-114-3

Keywords

Book part
Publication date: 5 June 2023

Figen Balo and Lutfu S. Sua

Composites based on fiber are commonly used in high-performance building materials. The composites mostly use petrochemically derived fibers like polyester and e-glass, due to…

Abstract

Composites based on fiber are commonly used in high-performance building materials. The composites mostly use petrochemically derived fibers like polyester and e-glass, due to their advantageous material features like high stiffness and strength. All the same, these fibers also have important shortcomings related to energy consumption, recyclability, initial processing expense, resulting health hazards, and sustainability. Increasing environmental awareness and new sustainable building technologies are driving the research, development, and usage of “green” building materials, especially the development of biomaterials.

In this chapter, the natural fiber evaluation approach is applied, which covers a diverse set of criteria. Consequently, the comparative assessment of diverse natural fiber types is applied through the use of an expert decision system approach. The best performing fiber choice is made by comparatively evaluating the materials related to green building. The proposed fiber can be used and applied by green building material manufacturing companies in various countries or locations as a reference when selecting the fiber with the best performance.

Details

Pragmatic Engineering and Lifestyle
Type: Book
ISBN: 978-1-80262-997-2

Keywords

Book part
Publication date: 13 September 2018

Samane Maroufi, Claudia A. Echeverria, Farshid Pahlevani and Veena Sahajwalla

Every year, tens of millions of the 1.4 billion cars on the world’s roads are decommissioned. While the ferrous and other metals that constitute about 75% of a vehicle by weight…

Abstract

Every year, tens of millions of the 1.4 billion cars on the world’s roads are decommissioned. While the ferrous and other metals that constitute about 75% of a vehicle by weight can be readily and profitably recycled, the remaining mix of plastics, glass, composites, complex materials, fragments and contaminants are mainly destined for landfill as automotive shredder residue (ASR). For every car, approximately 100–200 kg of ASR is disposed of in landfill, posing a growing technical and environmental challenge worldwide. The recovery of the ASR for high-end application is the focus of this study, aiming to optimise the use of these valuable resources and minimise the extractive pressure for raw materials, a future green manufacturing, contributing towards a zero waste circular economy. As the dissolution of carbon into iron is a key step in the manufacture of iron-carbon alloys, the feasibility of utilizing the waste polymers within ASR as sources of carbon in different areas of pyrometallurgical processing was investigated. Polypropylene and rubber, in a blend with metallurgical coke, were used as carbonaceous substrates and the slag-foaming phenomenon was investigated via the sessile drop technique in an argon environment at 1,550°C. The results indicated the rubber/coke blend achieved significantly better foaming behaviour, and the PP/coke blend exhibited a moderate improvement in slag foaming, in comparison to 100% metallurgical coke. The overall results indicated the incorporation of ASR had significant improvement in foaminess behaviour, increasing furnace efficiency.

Details

Unmaking Waste in Production and Consumption: Towards the Circular Economy
Type: Book
ISBN: 978-1-78714-620-4

Keywords

1 – 4 of 4