Search results

1 – 2 of 2
Article
Publication date: 10 November 2023

Wensheng Li, Yiding Zhang, Yanwei Xu, Guangming Jiao, Dunwen Zuo, Wenting Lu, Quanshi Cheng, Jiaqi Yu and Yajun Chen

This study aims to investigate the effect of post-treatment on anti-corrosion performance of Al coating on the surface of Ti-6Al-4V (TC4) fastener.

Abstract

Purpose

This study aims to investigate the effect of post-treatment on anti-corrosion performance of Al coating on the surface of Ti-6Al-4V (TC4) fastener.

Design/methodology/approach

The Al coatings with different layer structures were prepared on TC4 by middle-frequency and direct-current combined magnetron sputtering. The cross-sectional morphology and surface roughness of coatings were characterized by scanning electron microscope and atomic force microscope. The corrosion resistance was evaluated by electrochemical method. The monolayer coating was post-treated by Alodine chemical conversion, Ar+ bombardment and a combination of two methods above.

Findings

The results show that the interfaces in bilayer and trilayer coatings reduce the defects. Ar+ bombardment reduces the corrosion current density, and Alodine chemical conversion leads to a higher pitting corrosion potential. The combined post-treatment has the highest polarization resistance.

Originality/value

The corrosion resistance of the Al coating is enhanced as the layer quantity increases. The combination of two post-treatments, Ar+ bombardment and Alodine chemical conversion, could achieve an overall improvement in corrosion resistance of Al coating.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 31 October 2023

Ouided Dehas, Laidi Babouri, Yasmina Biskri and Jean-Francois Bardeau

This study aims to deal with both the development and mechanical investigations of unsaturated polyester matrix (UPR) composites containing recycled polyethylene terephthalate…

Abstract

Purpose

This study aims to deal with both the development and mechanical investigations of unsaturated polyester matrix (UPR) composites containing recycled polyethylene terephthalate (PET) fibers as new fillers.

Design/methodology/approach

UPR/PET fibers composites have been developed as mats by incorporating 5, 8, 13 and 18 parts per hundred of rubber (phr) of 6-, 10- and 15-mm length PET fibers from the recycling of postconsumer bottles. The mechanical and physical properties of the composites were investigated as a function of fiber content and length. A significant increase in stress at break and in ultimate stress (sr) were observed for composites reinforced with 5 and 8 phr of 15-mm length PET fibers. The Izod impact strength of UPR/mat PET fiber composites as a function of fiber rate and length showed that the 5 and 8 phr composites for the 15-mm length PET fiber have the optimal mechanical properties 13.55 and 10.50 Kj/m2, respectively. The morphological study showed that the strong adhesion resulting from the affinity of the PET fiber for the UPR matrix. The ductile fracture of materials reinforced with 5 and 8 phr is confirmed by the fiber deformation and fracture surface roughness.

Findings

This study concluded that the PET fiber enhances the properties of composites, a good correlation was observed between the results of the mechanical tests and the structural analysis revealing that for the lower concentrations, the PET fibers are well dispersed into the resin, but entanglements are evidenced when the fiber content increases.

Originality/value

It can be shown from scanning electron microscopy micrographs that the fabrication technique produced composites with good interfacial adhesion between PET fibers and UPR matrix.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 2 of 2