Search results

1 – 1 of 1
Article
Publication date: 5 March 2018

Yan Shang, Song Cen and Wengen Ouyan

The purpose of this paper is to propose a new finite element method (FEM) solving strategy for efficient analysis of the challenging edge effect problem in plate structures. Its…

Abstract

Purpose

The purpose of this paper is to propose a new finite element method (FEM) solving strategy for efficient analysis of the challenging edge effect problem in plate structures. Its main ideas are to develop special-purpose plate element models to effectively simulate the behaviors in the plate’s edge zones near free/SS1 edges.

Design/methodology/approach

These new elements are developed based on the hybrid-Trefftz element method. During their construction procedures, the analytical solutions of the edge effect problem, which are in exponential forms, are used to enhance the interior displacement fields. Besides, the Lagrangian multipliers are introduced into the modified hybrid-Trefftz functional for considering the stress resultant constraints at free/SS1 edges. Thus, these elements theoretically possess the abilities to correctly capture the very steep gradients of the resultant distributions in the boundary layers.

Findings

These new specialized hybrid-Trefftz plate elements can very efficiently solve the edge effect problem with high accuracy, even when distorted meshes are used. Moreover, because these elements’ construction procedures contain only boundary integrals, the computation expense for accurately integrating the exponential trial functions can be considerably saved.

Originality/value

This work presents an alternative novel idea for using the FEM to more effectively handle the local stress problems by incorporating the use of the analytical trial functions.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Access

Year

All dates (1)

Content type

1 – 1 of 1