Search results

1 – 10 of 100
Open Access
Article
Publication date: 10 December 2021

Pingan Zhu, Chao Zhang and Jun Zou

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the…

Abstract

Purpose

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the area of manufacturing.

Design/methodology/approach

No methodology was used because the paper is a review article.

Findings

no fundings.

Originality/value

Herein, the historical development, main strengths and measurement setup of DIC are introduced. Subsequently, the basic principles of the DIC technique are outlined in detail. The analysis of measurement accuracy associated with experimental factors and correlation algorithms is discussed and some useful recommendations for reducing measurement errors are also offered. Then, the utilization of DIC in different manufacturing fields (e.g. cutting, welding, forming and additive manufacturing) is summarized. Finally, the current challenges and prospects of DIC in intelligent manufacturing are discussed.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 15 March 2023

Xiao Fan Zhao, Andreas Wimmer and Michael F. Zaeh

The purpose of this paper is to demonstrate the impact of the welding sequence on the substrate plate distortion during the wire and arc additive manufacturing (WAAM) process…

1061

Abstract

Purpose

The purpose of this paper is to demonstrate the impact of the welding sequence on the substrate plate distortion during the wire and arc additive manufacturing (WAAM) process. This paper also aims to show the capability of finite element simulations in the prediction of those thermally induced distortions.

Design/methodology/approach

An experiment was conducted in which solid aluminum blocks were manufactured using two different welding sequences. The distortion of the substrates was measured at predefined positions and converted into bending and torsion values. Subsequently, a weakly coupled thermo-mechanical finite element model was created using the Abaqus simulation software. The model was calibrated and validated with data gathered from the experiments.

Findings

The results of this paper showed that the welding sequence of a part significantly affects the formation of thermally induced distortions of the final part. The calibrated simulation model was able to capture the different distortion behavior attributed to the welding sequences.

Originality/value

Within this work, a simulation model was developed capable of predicting the distortion of WAAM parts in advance. The findings of this paper can be used to improve the design of WAAM welding sequences while avoiding high experimental efforts.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Book part
Publication date: 4 May 2018

Zulmiardi and Meriatna

Results – From a hardening test, we then tested with an impact tester charpy Treviolo H060. The results showed that the impact strength is escalated up to 29.09% post-hardening…

Abstract

Results – From a hardening test, we then tested with an impact tester charpy Treviolo H060. The results showed that the impact strength is escalated up to 29.09% post-hardening circle, which was observed using electrical microscope. The value of steel strength increased 2.12 J/mm2 compared with earlier hardening process, which is, 1.57 J/mm2. The results showed that the fracture in the welding process without the hardening process is a brittle fracture that is shown by the flat crystal structure; on the other hand, the hardening process before welding shows a form of coarse-looking structure indicating that the specimen has an impact towards which the toughness is higher.

Research Limitations/Implications – The effect influence of the hardening process to the impact strength of welded joints before and after the hardening process SMAW AISI 1050 steel hardening process. The mechanical properties test is done with the equipment impact charpy.

Practical Implications – The field we often encounter is erosion or wear out occurring in the construction, for example, many equipments such as agricultural equipment, bridges, ship construction, motor shaft, machining such as hand tools, small rings, and agricultural tools.

Originality/Value – This is the first reported research on impact strength using the hardening test.

Open Access
Article
Publication date: 17 May 2022

Qiwen Xue and Xiuyun Du

In view of the difficulty in determining the key parameters d in the Corten-Dolan model, based on the introduction of small loads, damage degrees and stress states to the…

Abstract

Purpose

In view of the difficulty in determining the key parameters d in the Corten-Dolan model, based on the introduction of small loads, damage degrees and stress states to the Corten-Dolan model and the existing improved model, the sequential effects of the adjacent two-stage load were further considered.

Design/methodology/approach

Two improved Corten-Dolan models were established on the basis of modifying the parameter d by two different methods, namely, increasing stress ratio coefficient as well as considering the effects of loading sequence and damage degree as independent influencing factors respectively. According to the test data of the welded joints of common materials (standard 45 steel), alloy materials (standard 16Mn steel) and Q235B steel, the validity and feasibility of the above two improved models for fatigue life prediction were verified.

Findings

Results show that, compared with the traditional Miner model and the existing Corten-Dolan improved model, the two improved models have higher prediction accuracy in the fatigue life prediction of welding materials whether under two-stage load or multi-stage load.

Originality/value

Because the mathematical expressions of the models are relatively simple and need no multi-layer iterative calculation, it is convenient to predict the fatigue life of welded structure in practical engineering.

Details

Railway Sciences, vol. 1 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 3 February 2020

Jørgen Blindheim, Christer W. Elverum, Torgeir Welo and Martin Steinert

This paper proposes the combination of rapid prototyping and physical modelling as a set-based concept evaluation method in the early stage of new product development.

3711

Abstract

Purpose

This paper proposes the combination of rapid prototyping and physical modelling as a set-based concept evaluation method in the early stage of new product development.

Design/methodology/approach

The concept evaluation method is applied in a case study of a new metal additive manufacturing process for aluminium, where a set of four extruder concepts has been modelled and evaluated. Rapid prototyping was used to produce plastic models of the different designs, and plasticine feedstock material was used to physically model the metal flow during operation. Finally, the selected concept has been verified in full-scale for processing of aluminium feedstock material.

Findings

The proposed method led to several valuable insights on critical factors that were unknown at the outset of the development project. Overall, these insights enabled concept exploration and concept selection that led to a substantially better solution than the original design.

Research limitations/implications

This method can be applied for other projects where numerical approaches are not applicable or capable, and where the costs or time required for producing full-scale prototypes are high.

Practical implications

Employing this method can enable a more thorough exploration of the design space, allowing new solutions to be discovered.

Originality/value

The proposed method allows a design team to test and evaluate multiple concepts at lower cost and time than what is usually required to produce full-scale prototypes. It is, therefore, concluded to be a valuable design strategy for the early development stages of complex products or technologies.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 28 May 2019

Olanrewaju Ayobami Omoya, Kassandra A. Papadopoulou and Eric Lou

The purpose of this paper is to investigate the application of reliability engineering to oil and gas (O&G) pipeline systems with the aim of identifying means through which…

3059

Abstract

Purpose

The purpose of this paper is to investigate the application of reliability engineering to oil and gas (O&G) pipeline systems with the aim of identifying means through which reliability engineering can be used to improve pipeline integrity, specifically with regard to man-made incidents (e.g. material/weld/equipment failure, corrosion, incorrect operation and excavation damages).

Design/methodology/approach

A literature review was carried out on the application of reliability tools to O&G pipeline systems and four case studies are presented as examples of how reliability engineering can help to improve pipeline integrity. The scope of the paper is narrowed to four stages of the pipeline life cycle; the decommissioning stage is not part of this research. A survey was also carried out using a questionnaire to check the level of application of reliability tools in the O&G industry.

Findings

Data from survey and literature show that a reliability-centred approach can be applied and will improve pipeline reliability where applied; however, there are several hindrances to the effective application of reliability tools, the current methods are time based and focus mainly on design against failure rather than design for reliability.

Research limitations/implications

The tools identified do not cover the decommissioning of the pipeline system. Research validation sample size can be broadened to include more pipeline stakeholders/professionals. Pipeline integrity management systems are proprietary information and permission is required from stakeholders to do a detailed practical study.

Originality/value

This paper proposes the minimum applied reliability tools for application during the design, operation and maintenance phases targeted at the O&G industry. Critically, this paper provides a case for an integrated approach to applying reliability and maintenance tools that are required to reduce pipeline failure incidents in the O&G industry.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 9
Type: Research Article
ISSN: 0265-671X

Keywords

Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 3 May 2022

Qingxiang Zhou, Fang Liu, Jingming Li, Jiankui Li, Shuangnan Zhang and Guixi Cai

This study aims to solve the problem of weld quality inspection, for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin…

Abstract

Purpose

This study aims to solve the problem of weld quality inspection, for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness (2–4 mm), the conventional nondestructive testing method of weld quality is difficult to implement.

Design/methodology/approach

In order to solve this problem, the ultrasonic creeping wave detection technology was proposed. The impact of the profile structure on the creeping wave detection was studied by designing profile structural test blocks and artificial simulation defect test blocks. The detection technology was used to test the actual welded test blocks, and compared with the results of X-ray test and destructive test (tensile test) to verify the accuracy of the ultrasonic creeping wave test results.

Findings

It is indicated that that X-ray has better effect on the inspection of porosities and incomplete penetration defects. However, due to special detection method and protection, the detection speed is slow, which cannot meet the requirements of field inspection of the welding structure of aluminum alloy thin-walled profile for high-speed train body. It can be used as an auxiliary detection method for a small number of sampling inspection. The ultrasonic creeping wave can be used to detect the incomplete penetration welds with the equivalent of 0.25 mm or more, the results of creeping wave detection correspond well with the actual incomplete penetration defects.

Originality/value

The results show that creeping wave detection results correspond well with the actual non-penetration defects and can be used for welding quality inspection of aluminum alloy thin-wall profile composite welding joints. It is recommended to use the echo amplitude of the 10 mm × 0.2 mm × 0.5 mm notch as the criterion for weld qualification.

Open Access
Article
Publication date: 7 April 2022

Nina Kilbrink, Jan Axelsson and Stig-Börje Asplund

The purpose of this study is to explore how critical aspects can be defined in a learning study on welding without conducting any pre-tests.

Abstract

Purpose

The purpose of this study is to explore how critical aspects can be defined in a learning study on welding without conducting any pre-tests.

Design/methodology/approach

In this study, the authors focus on empirical examples from a learning study on welding conducted in six iterative cycles, with conversation analysis and variation theory approach (CAVTA) as a theoretical basis. The welding lessons have been video-recorded, and in the study, the authors analyze examples where the teachers try to identify critical aspects of a vocational practical object of learning in interaction. CAVTA permeates the complete process, where the analysis has been part of the iterative cycles and further developed when the six cycles were completed.

Findings

The results show how critical aspects can be made visible in the interaction between teacher(s) and student(s) in the enacted learning situation. In the process, the authors work with the three concepts expected critical aspects, displayed critical aspects and targeted critical features in relation to a vocational practical object of learning where conducting a pre-test to define critical aspects is not educationally possible.

Originality/value

Teaching vocational practical objects of learning could be seen as something different from teaching other kinds of objects of learning and the use of the traditional pre-tests in learning studies may be problematic. From that follows, that other ways of finding the critical aspects for the students regarding a vocational practical object of learning might be needed. In this study, such a way is presented.

Details

International Journal for Lesson & Learning Studies, vol. 11 no. 5
Type: Research Article
ISSN: 2046-8253

Keywords

1 – 10 of 100