Search results

1 – 10 of 138
Article
Publication date: 29 February 2024

Yuhan Tang, Yuedong Wang, Jiayu Liu, Boya Tian, Qi Dong, Ziwei He and Jiayi Wen

In order to extend the application of the original octagonal Goodman–Smith fatigue limit diagram, which is commonly used for the evaluation of structure fatigue stress in…

Abstract

Purpose

In order to extend the application of the original octagonal Goodman–Smith fatigue limit diagram, which is commonly used for the evaluation of structure fatigue stress in engineering, a modification of it is proposed for the structure made of S355 steel (commonly used in high-speed electric multiple units (EMUs) bogie frame).

Design/methodology/approach

The modification is made based on Deutscher Verband für Schweißen und verwandte Verfahren e. V. (DVS) 1612 standard and the γ-P-S-N curve, with consideration of the fatigue evaluation requirements of different survival rates and confidence levels. The verification of the modification is performed for three welded joints and for the comparison with the experimental data.

Findings

The results indicate that the design survival rate, the design safety margin and the fatigue stress evaluation of welded joint types are all improved by using the modified diagram.

Originality/value

There are relatively few studies on modifying octagonal Goodman–Smith fatigue limit diagram. In this paper, a modified diagram is proposed and applied in order to ensure the safety and durability of key welded structures of rail vehicles.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 February 2024

Akhil Khajuria, Anurag Misra and S. Shiva

An experimental investigation for developing structure-property correlations of hot-rolled E410 steels with different carbon contents, i.e. 0.04wt.%C and 0.17wt.%C metal active…

Abstract

Purpose

An experimental investigation for developing structure-property correlations of hot-rolled E410 steels with different carbon contents, i.e. 0.04wt.%C and 0.17wt.%C metal active gas (MAG) and cold metal transfer (CMT)-MAG weldments was undertaken.

Design/methodology/approach

Mechanical properties and microstructure of MAG and CMT-MAG weldments of two E410 steels with varying content of carbon were compared using standardized mechanical testing procedures, and conventional microscopy.

Findings

0.04wt.%C steel had strained ferritic and cementite sub-structures in blocky shape and large dislocation density, while 0.17wt.%C steel consisted of pearlite and polygonal ductile ferrite. This effected yield strength (YS), and microhardness being larger in 0.04wt.%C steel, %elongation being larger in 0.17wt.%C steel. Weldments of both E410 steels obtained with CMT-MAG performed better than MAG in terms of YS, ultimate tensile strength (UTS), %elongation, and toughness. It was due to low heat input of CMT-MAG that resulted in refinement of weld metal, and subzones of heat affected zone (HAZ).

Originality/value

A substantial improvement in YS (∼9%), %elongation (∼38%), and room temperature impact toughness (∼29%) of 0.04wt.%C E410 steel is achieved with CMT-MAG over MAG welding. Almost ∼10, ∼12.5, and ∼16% increment in YS, %elongation, and toughness of 0.17wt.%C E410 steel is observed with CMT-MAG. Relatively low heat input of CMT-MAG leads to development of fine Widmanstätten and acicular ferrite in weld metal and microstructural refinement in HAZ subzones with nearly similar characteristics of base metal.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 29 March 2024

Pingyang Zheng, Shaohua Han, Dingqi Xue, Ling Fu and Bifeng Jiang

Because of the advantages of high deposition efficiency and low manufacturing cost compared with other additive technologies, robotic wire arc additive manufacturing (WAAM…

Abstract

Purpose

Because of the advantages of high deposition efficiency and low manufacturing cost compared with other additive technologies, robotic wire arc additive manufacturing (WAAM) technology has been widely applied for fabricating medium- to large-scale metallic components. The additive manufacturing (AM) method is a relatively complex process, which involves the workpiece modeling, conversion of the model file, slicing, path planning and so on. Then the structure is formed by the accumulated weld bead. However, the poor forming accuracy of WAAM usually leads to severe dimensional deviation between the as-built and the predesigned structures. This paper aims to propose a visual sensing technology and deep learning–assisted WAAM method for fabricating metallic structure, to simplify the complex WAAM process and improve the forming accuracy.

Design/methodology/approach

Instead of slicing of the workpiece modeling and generating all the welding torch paths in advance of the fabricating process, this method is carried out by adding the feature point regression branch into the Yolov5 algorithm, to detect the feature point from the images of the as-built structure. The coordinates of the feature points of each deposition layer can be calculated automatically. Then the welding torch trajectory for the next deposition layer is generated based on the position of feature point.

Findings

The mean average precision score of modified YOLOv5 detector is 99.5%. Two types of overhanging structures have been fabricated by the proposed method. The center contour error between the actual and theoretical is 0.56 and 0.27 mm in width direction, and 0.43 and 0.23 mm in height direction, respectively.

Originality/value

The fabrication of circular overhanging structures without using the complicate slicing strategy, turning table or other extra support verified the possibility of the robotic WAAM system with deep learning technology.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 November 2023

Chunliang Niu

To obtain better fatigue resistance for marine engineering equipment welded joints in the design stage, the design method of the marine engineering equipment welded joint design…

Abstract

Purpose

To obtain better fatigue resistance for marine engineering equipment welded joints in the design stage, the design method of the marine engineering equipment welded joint design stage needs to be studied.

Design/methodology/approach

Based on the structural stress theory, a design method of the marine engineering equipment welded joints with better fatigue performance is proposed. The effectiveness of the method is demonstrated through the simulation analysis and fatigue test of typical marine engineering equipment welded joints.

Findings

Methods based on the theoretical advantages of structural stress and the principle of ensuring that the welded joint has a low degree of stress concentration.

Originality/value

The design method of marine engineering equipment welded joints proposed in this study provides a set of operable design routes for technicians, which can better meet the needs of engineering applications.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 January 2024

Shengfu Xue, Zhengping He, Bingzhi Chen and Jianxin Xu

This study investigates the fitting techniques for notch fatigue curves, seeking a more reliable method to predict the lifespan of welded structures.

Abstract

Purpose

This study investigates the fitting techniques for notch fatigue curves, seeking a more reliable method to predict the lifespan of welded structures.

Design/methodology/approach

Building on the fatigue test results of butt and cruciform joints, this research delves into the selection of fitting methods for the notch fatigue curve of welded joints. Both empirical formula and finite element methods (FEMs) were employed to assess the notch stress concentration factor at the toe and root of the two types of welded joints. Considering the mean stress correction and weld misalignment coefficients, the notch fatigue life curves were established using both direct and indirect methods.

Findings

An engineering example was employed to discern the differences between the direct and indirect approaches. The findings highlight the enhanced reliability of the indirect method for fitting the fatigue life curve.

Originality/value

While the notch stress approach is extensively adopted due to its accurate prediction of component fatigue life, most scholars have overlooked the importance of its curve fitting methods. Existing literature scantily addresses the establishment of these curves. This paper offers a focused examination of fatigue curve fitting techniques, delivering valuable perspectives on method selection.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 March 2024

Taotao Jin, Xiuhui Cui, Chuanyue Qi and Xinyu Yang

This paper aims to develop a specific type of mobile nonrigid support friction stir welding (FSW) robot, which can adapt to aluminum alloy trucks for rapid online repair.

14

Abstract

Purpose

This paper aims to develop a specific type of mobile nonrigid support friction stir welding (FSW) robot, which can adapt to aluminum alloy trucks for rapid online repair.

Design/methodology/approach

The friction stir welding robot is designed to complete online repair according to the surface damage of large aluminum alloy trucks. A rotatable telescopic arm unit and a structure for a cutting board in the shape of a petal that was optimized by finite element analysis are designed to give enough top forging force for welding to address the issues of inadequate support and significant deformation in the repair process.

Findings

The experimental results indicate that the welding robot is capable of performing online surface repairs for large aluminum alloy trucks without rigid support on the backside, and the welding joint exhibits satisfactory performance.

Practical implications

Compared with other heavy-duty robotic arms and gantry-type friction stir welding robots, this robot can achieve online welding without disassembling the vehicle body, and it requires less axial force. This lays the foundation for the future promotion of lightweight equipment.

Originality/value

The designed friction stir welding robot is capable of performing online repairs without dismantling the aluminum alloy truck body, even in situations where sufficient upset force is unavailable. It ensures welding quality and exhibits high efficiency. This approach is considered novel in the field of lightweight online welding repairs, both domestically and internationally.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 April 2024

Satyaveer Singh, N. Yuvaraj and Reeta Wattal

The criteria importance through intercriteria correlation (CRITIC) and range of value (ROV) combined methods were used to determine a single index for all multiple responses.

Abstract

Purpose

The criteria importance through intercriteria correlation (CRITIC) and range of value (ROV) combined methods were used to determine a single index for all multiple responses.

Design/methodology/approach

This paper used cold metal transfer (CMT) and pulse metal-inert gas (MIG) welding processes to study the weld-on-bead geometry of AA2099-T86 alloy. This study used Taguchi's approach to find the optimal setting of the input welding parameters. The welding current, welding speed and contact-tip-to workpiece distance were the input welding parameters for finding the output responses, i.e. weld penetration, dilution and heat input. The L9 orthogonal array of Taguchi's approach was used to find out the optimal setting of the input parameters.

Findings

The optimal input welding parameters were determined with combined output responses. The predicted optimum welding input parameters were validated through confirmation tests. Analysis of variance showed that welding speed is the most influential factor in determining the weld bead geometry of the CMT and pulse MIG welding techniques.

Originality/value

The heat input and weld bead geometry are compared in both welding processes. The CMT welding samples show superior defect-free weld beads than pulse MIG welding due to lesser heat input and lesser dilution.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Content available
Article
Publication date: 8 April 2024

José A.F.O. Correia and Shun-Peng Zhu

Abstract

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Content available
Article
Publication date: 29 September 2022

Kaiyuan Wu, Hao Huang, Ziwei Chen, Min Zeng and Tong Yin

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding…

Abstract

Purpose

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding power supply. So a novel and simplified implementation of digital high-power pulsed MIG welding power supply with LLC resonant converter is proposed in this work.

Design/methodology/approach

A simple parallel full-bridge LLC resonant converter structure is used to design the digital power supply with high welding current, low arc voltage, high open-circuit voltage and a wide range of arc loads, by effectively exploiting the variable load and high-power applications of LLC resonant converter.

Findings

The efficiency of each converter can reach up to 92.3%, under the rated operating condition. Notably, with proposed scheme, a short-circuit current mutation of 300 A can stabilize at 60 A within 8 ms. Furthermore, the pulsed MIG welding test shows that a stable welding process with 280 A peak current can be realized and a well-formed weld bead can be obtained, thereby verifying the feasibility of LLC resonant converter for pulsed MIG welding power supply.

Originality/value

The high efficiency, high power density and weak EMI of LLC resonant converter are conducive to the further optimization of pulsed MIG welding power supply. Consequently, a high performance welding power supply is implemented by taking adequate advantages of LLC resonant converter, which can provide equipment support for exploring better pulsed MIG welding processes.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of 138