Search results

1 – 10 of 196
Article
Publication date: 24 May 2023

Rosa Vinciguerra, Francesca Cappellieri, Michele Pizzo and Rosa Lombardi

This paper aims to define a hierarchical and multi-criteria framework based on pillars of the Modernization of Higher Education to evaluate European Accounting Doctoral Programmes…

Abstract

Purpose

This paper aims to define a hierarchical and multi-criteria framework based on pillars of the Modernization of Higher Education to evaluate European Accounting Doctoral Programmes (EADE-Model).

Design/methodology/approach

The authors applied a quali-quantitative methodology based on the analytic hierarchy process and the survey approach. The authors conducted an extensive literature and regulation review to identify the dimensions affecting the quality of Doctoral Programmes, choosing accounting as the relevant and pivotal field. The authors also used the survey to select the most critical quality dimensions and derive their weight to build EADE Model. The validity of the proposed model has been tested through the application to the Italian scenario.

Findings

The findings provide a critical extension of accounting ranking studies constructing a multi-criteria, hierarchical and updated evaluation model recognizing the role of doctoral training in the knowledge-based society. The results shed new light on weak areas apt to be improved and propose potential amendments to enhance the quality standard of ADE.

Practical implications

Theoretical and practical implications of this paper are directed to academics, policymakers and PhD programmes administrators.

Originality/value

The research is original in drafting a hierarchical multi-criteria framework for evaluating ADE in the Higher Education System. This model may be extended to other fields.

Article
Publication date: 21 February 2024

Nehal Elshaboury, Tarek Zayed and Eslam Mohammed Abdelkader

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective…

Abstract

Purpose

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective maintenance and rehabilitation strategies for water pipes based on reliable deterioration models and cost-effective inspection programs. In the light of foregoing, the paramount objective of this research study is to develop condition assessment and deterioration prediction models for saltwater pipes in Hong Kong.

Design/methodology/approach

As a perquisite to the development of condition assessment models, spherical fuzzy analytic hierarchy process (SFAHP) is harnessed to analyze the relative importance weights of deterioration factors. Afterward, the relative importance weights of deterioration factors coupled with their effective values are leveraged using the measurement of alternatives and ranking according to the compromise solution (MARCOS) algorithm to analyze the performance condition of water pipes. A condition rating system is then designed counting on the generalized entropy-based probabilistic fuzzy C means (GEPFCM) algorithm. A set of fourth order multiple regression functions are constructed to capture the degradation trends in condition of pipelines overtime covering their disparate characteristics.

Findings

Analytical results demonstrated that the top five influential deterioration factors comprise age, material, traffic, soil corrosivity and material. In addition, it was derived that developed deterioration models accomplished correlation coefficient, mean absolute error and root mean squared error of 0.8, 1.33 and 1.39, respectively.

Originality/value

It can be argued that generated deterioration models can assist municipalities in formulating accurate and cost-effective maintenance, repair and rehabilitation programs.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 October 2022

Rubaya Rahat, Piyush Pradhananga and Mohamed ElZomor

Safe-to-fail (SF) is an emerging resilient design approach that has the potential to minimize the severity of flood damages. The purpose of this study is to explore the SF design…

Abstract

Purpose

Safe-to-fail (SF) is an emerging resilient design approach that has the potential to minimize the severity of flood damages. The purpose of this study is to explore the SF design strategies to reduce flood disaster damages in US coastal cities. Therefore, this study addresses two research questions: identifying the most suitable SF criteria and flood solution alternatives for coastal cities from industry professionals’ perspective; and investigating the controlling factors that influence the AEC students’ interest to learn about SF concepts through the curricula.

Design/methodology/approach

This study used the analytical hierarchy process to evaluate the SF criteria and flood solutions where data were collected through surveying 29 Department of Transportation professionals from different states. In addition, the study adopted a quantitative methodology by surveying 55 versed participants who reside in a coastal area and have coastal flood experiences. The data analysis included ordinal probit regression and descriptive analysis.

Findings

The results suggest that robustness is the highest weighted criterion for implementing SF design in coastal cities. The results demonstrated that ecosystem restoration is the highest-ranked SF flood solution followed by green infrastructure. Moreover, the results highlighted that age, duration spent in the program and prior knowledge of SF are significantly related to AEC students’ interest to learn this concept.

Originality/value

SF design anticipates failures while designing infrastructures thus minimizing failure consequences due to flood disasters. The findings can facilitate the implementation of the SF design concept during the construction of new infrastructures in coastal cities as well as educate the future workforces to contribute to developing resilient built environments.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 15 no. 2
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 19 December 2022

Hui Zhao, Yuanyuan Ge and Weihan Wang

This study aims to improve the offshore wind farm (OWF) site selection evaluation index system and establishes a decision-making model for OWF site selection. It is expected to…

Abstract

Purpose

This study aims to improve the offshore wind farm (OWF) site selection evaluation index system and establishes a decision-making model for OWF site selection. It is expected to provide helpful references for the progress of offshore wind power.

Design/methodology/approach

Firstly, this paper establishes an evaluation criteria system for OWF site selection, considering six criteria (wind resource, environment, economic, technical, social and risk) and related subcriteria. Then, the Criteria Importance Though Intercrieria Correlation (CRITIC) method is introduced to figure out the weights of evaluation indexes. In addition, the cumulative prospect theory and technique for order preference by similarity to an ideal solution (CPT-TOPSIS) method are employed to construct the OWF site selection decision-making model. Finally, taking the OWF site selection in China as an example, the effectiveness and robustness of the framework are verified by sensitivity analysis and comparative analysis.

Findings

This study establishes the OWF site selection evaluation system and constructs a decision-making model under the spherical fuzzy environment. A case of China is employed to verify the effectiveness and feasibility of the model.

Originality/value

In this paper, a new decision-making model is proposed for the first time, considering the ambiguity and uncertainty of information and the risk attitudes of decision-makers (DMs) in the decision-making process.

Details

Kybernetes, vol. 53 no. 3
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 8 February 2024

Muneer Ahmad, Muhammad Bilal Zafar and Abida Perveen

This study aims to investigate the comparative importance of factors influencing the customer shift behavior from conventional to Islamic banking for consumer finance in Pakistan.

Abstract

Purpose

This study aims to investigate the comparative importance of factors influencing the customer shift behavior from conventional to Islamic banking for consumer finance in Pakistan.

Design/methodology/approach

First, a comprehensive analysis of the existing literature was conducted to identify a broad range of factors related to customer shift behavior. Through an expert sampling, 14 essential factors were chosen for further investigation. Second, a questionnaire was developed using the analytical hierarchy process (AHP). This questionnaire was then distributed among customers who had previously been using conventional banking services but had made a shift toward Islamic banking. The purpose of this questionnaire was to gather data and insights regarding their motivations and decision-making process behind the shift, and a sample 215 customers are taken in the study.

Findings

The results of AHP depicts that the religiosity is a most important factor influencing customers to shift from conventional to Islamic banking, and the second most important factor is pricing. The other subsequent important factors are reputation of the bank, marketing and promotion, service quality, behavior of banks staff, Shariah compliance, management, convenience, fastness and charges/fees. Whereas documentation, ambiance and recommendation are found least important factors to patronize Islamic banking.

Practical implications

The study recommends Islamic banks to create awareness, concentrating on religious factor to have a greater impact on growth of Islamic banking and shrinking of conventional banking. Further, it suggests Islamic banks to apply Shariah-recommended approach of doing business, to help community in best possible way and to launch differentiated marketing techniques to attract customers. It also proposes regulatory authorities to provide facilitation to Islamic banking business by providing level playing field similar to conventional banking, tax equality and conversion of public financing from conventional banking to Islamic banking.

Originality/value

The originality of this study lies in its comprehensive analysis of factors influencing consumer shift behavior from conventional to Islamic banking in the context of consumer finance in Pakistan. By using the AHP, the study provides a structured approach to understanding the relative importance of these factors. This is the uniqueness of the paper that it applies the AHP for the analysis. Furthermore, the study offers practical implications for Islamic banks and regulatory authorities to effectively address and capitalize on this consumer shift trend.

Details

Journal of Islamic Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1759-0833

Keywords

Article
Publication date: 27 March 2024

Temesgen Agazhie and Shalemu Sharew Hailemariam

This study aims to quantify and prioritize the main causes of lean wastes and to apply reduction methods by employing better waste cause identification methodologies.

Abstract

Purpose

This study aims to quantify and prioritize the main causes of lean wastes and to apply reduction methods by employing better waste cause identification methodologies.

Design/methodology/approach

We employed fuzzy techniques for order preference by similarity to the ideal solution (FTOPSIS), fuzzy analytical hierarchy process (FAHP), and failure mode effect analysis (FMEA) to determine the causes of defects. To determine the current defect cause identification procedures, time studies, checklists, and process flow charts were employed. The study focuses on the sewing department of a clothing industry in Addis Ababa, Ethiopia.

Findings

These techniques outperform conventional techniques and offer a better solution for challenging decision-making situations. Each lean waste’s FMEA criteria, such as severity, occurrence, and detectability, were examined. A pairwise comparison revealed that defect has a larger effect than other lean wastes. Defects were mostly caused by inadequate operator training. To minimize lean waste, prioritizing their causes is crucial.

Research limitations/implications

The research focuses on a case company and the result could not be generalized for the whole industry.

Practical implications

The study used quantitative approaches to quantify and prioritize the causes of lean waste in the garment industry and provides insight for industrialists to focus on the waste causes to improve their quality performance.

Originality/value

The methodology of integrating FMEA with FAHP and FTOPSIS was the new contribution to have a better solution to decision variables by considering the severity, occurrence, and detectability of the causes of wastes. The data collection approach was based on experts’ focus group discussion to rate the main causes of defects which could provide optimal values of defect cause prioritization.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 7 September 2023

Zainab Batool Rizvi, Chaudry Bilal Ahmad Khan and Michael O’Sullivan

This paper aims to explore key management actions for implementing security on the cloud, which is a critical issue as many organizations are moving business processes and data on…

Abstract

Purpose

This paper aims to explore key management actions for implementing security on the cloud, which is a critical issue as many organizations are moving business processes and data on it. The cloud is a flexible, low cost and highly available technology, but it comes with increased complexity in maintaining the cloud consumer’s security. In this research, a model was built to assist strategic decision-makers in choosing from a diverse range of actions that can be taken to manage cloud security.

Design/methodology/approach

Published research from 2010 to 2022 was reviewed to identify alternatives to management actions pertaining to cloud security. Analytical hierarchical process (AHP) was applied to rate the most important action(s). For this, the alternatives, along with selection criteria, were summarized through thematic analysis. To gauge the relative importance of the alternatives, a questionnaire was distributed among cloud security practitioners to poll their opinion. AHP was then applied to the aggregated survey responses.

Findings

It was found that the respondents gave the highest importance to aligning information security with business needs. Building a cloud-specific risk management framework was rated second, while the actions: enforce and monitor contractual obligations, and update organizational structure, were rated third and fourth, respectively.

Research limitations/implications

The research takes a general view without catering to specialized industry-based scenarios.

Originality/value

This paper highlights the role of management actions when implementing cloud security. It presents an AHP-based multi-criteria decision-making model that can be used by strategic decision-makers in selecting the optimum mode of action. Finally, the criteria used in the AHP model highlight how each alternative contributes to cloud security.

Article
Publication date: 24 October 2023

Bianca Arcifa de Resende, Franco Giuseppe Dedini, Jony Javorsky Eckert, Tiago F.A.C. Sigahi, Jefferson de Souza Pinto and Rosley Anholon

This study aims to propose a facilitating methodology for the application of Fuzzy FMEA (Failure Mode and Effect Analysis), comparing the traditional approach with fuzzy…

Abstract

Purpose

This study aims to propose a facilitating methodology for the application of Fuzzy FMEA (Failure Mode and Effect Analysis), comparing the traditional approach with fuzzy variations, supported by a case application in the aeronautical sector.

Design/methodology/approach

Based on experts' opinions in risk analysis within the aeronautical sector, rules governing the relationship between severity, occurrence, detection and risk factor were defined. This served as input for developing a fuzzyfied FMEA tool using the Matlab Fuzzy Logic Toolbox. The tool was applied to the sealing process in a company within the aeronautical sector, using triangular and trapezoidal membership functions, and the results were compared with the traditional FMEA approach.

Findings

The results of the comparative application of traditional FMEA and fuzzyfied FMEA using triangular and trapezoidal functions have yielded valuable insights into risk analysis. The findings indicated that fuzzyfied FMEA maintained coherence with the traditional analysis in identifying higher-risk effects, aligning with the prioritization of critical failure modes. Additionally, fuzzyfied FMEA allowed for a more refined prioritization by accounting for variations in each variable through fuzzy rules, thereby improving the accuracy of risk analysis and providing a more realistic representation of potential hazards. The application of the developed fuzzyfied FMEA approach showed promise in enhancing risk assessment in the aeronautical sector by considering uncertainties and offering a more detailed and context-specific analysis compared to conventional FMEA.

Practical implications

This study emphasizes the potential of fuzzyfied FMEA in enhancing risk assessment by accurately identifying critical failure modes and providing a more realistic representation of potential hazards. The application case reveals that the proposed tool can be integrated with expert knowledge to improve decision-making processes and risk mitigation strategies within the aeronautical industry. Due to its straightforward approach, this facilitating methodology could also prove beneficial in other industrial sectors.

Originality/value

This paper presents the development and application of a facilitating methodology for implementing Fuzzy FMEA, comparing it with the traditional approach and incorporating variations using triangular and trapezoidal functions. This proposed methodology uses the Toolbox Fuzzy Logic of Matlab to create a fuzzyfied FMEA tool, enabling a more nuanced and context-specific risk analysis by considering uncertainties.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 28 April 2023

Daas Samia and Innal Fares

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a…

Abstract

Purpose

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a framework for optimizing the reliability of emergency safety barriers.

Design/methodology/approach

The emergency event tree analysis is combined with an interval type-2 fuzzy-set and analytic hierarchy process (AHP) method. In order to the quantitative data is not available, this study based on interval type2 fuzzy set theory, trapezoidal fuzzy numbers describe the expert's imprecise uncertainty about the fuzzy failure probability of emergency safety barriers related to the liquefied petroleum gas storage prevent. Fuzzy fault tree analysis and fuzzy ordered weighted average aggregation are used to address uncertainties in emergency safety barrier reliability assessment. In addition, a critical analysis and some corrective actions are suggested to identify weak points in emergency safety barriers. Therefore, a framework decisions are proposed to optimize and improve safety barrier reliability. Decision-making in this framework uses evidential reasoning theory to identify corrective actions that can optimize reliability based on subjective safety analysis.

Findings

A real case study of a liquefied petroleum gas storage in Algeria is presented to demonstrate the effectiveness of the proposed methodology. The results show that the proposed methodology provides the possibility to evaluate the values of the fuzzy failure probability of emergency safety barriers. In addition, the fuzzy failure probabilities using the fuzzy type-2 AHP method are the most reliable and accurate. As a result, the improved fault tree analysis can estimate uncertain expert opinion weights, identify and evaluate failure probability values for critical basic event. Therefore, suggestions for corrective measures to reduce the failure probability of the fire-fighting system are provided. The obtained results show that of the ten proposed corrective actions, the corrective action “use of periodic maintenance tests” prioritizes reliability, optimization and improvement of safety procedures.

Research limitations/implications

This study helps to determine the safest and most reliable corrective measures to improve the reliability of safety barriers. In addition, it also helps to protect people inside and outside the company from all kinds of major industrial accidents. Among the limitations of this study is that the cost of corrective actions is not taken into account.

Originality/value

Our contribution is to propose an integrated approach that uses interval type-2 fuzzy sets and AHP method and emergency event tree analysis to handle uncertainty in the failure probability assessment of emergency safety barriers. In addition, the integration of fault tree analysis and fuzzy ordered averaging aggregation helps to improve the reliability of the fire-fighting system and optimize the corrective actions that can improve the safety practices in liquefied petroleum gas storage tanks.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 3 August 2023

Yandong Hou, Zhengbo Wu, Xinghua Ren, Kaiwen Liu and Zhengquan Chen

High-resolution remote sensing images possess a wealth of semantic information. However, these images often contain objects of different sizes and distributions, which make the…

Abstract

Purpose

High-resolution remote sensing images possess a wealth of semantic information. However, these images often contain objects of different sizes and distributions, which make the semantic segmentation task challenging. In this paper, a bidirectional feature fusion network (BFFNet) is designed to address this challenge, which aims at increasing the accurate recognition of surface objects in order to effectively classify special features.

Design/methodology/approach

There are two main crucial elements in BFFNet. Firstly, the mean-weighted module (MWM) is used to obtain the key features in the main network. Secondly, the proposed polarization enhanced branch network performs feature extraction simultaneously with the main network to obtain different feature information. The authors then fuse these two features in both directions while applying a cross-entropy loss function to monitor the network training process. Finally, BFFNet is validated on two publicly available datasets, Potsdam and Vaihingen.

Findings

In this paper, a quantitative analysis method is used to illustrate that the proposed network achieves superior performance of 2–6%, respectively, compared to other mainstream segmentation networks from experimental results on two datasets. Complete ablation experiments are also conducted to demonstrate the effectiveness of the elements in the network. In summary, BFFNet has proven to be effective in achieving accurate identification of small objects and in reducing the effect of shadows on the segmentation process.

Originality/value

The originality of the paper is the proposal of a BFFNet based on multi-scale and multi-attention strategies to improve the ability to accurately segment high-resolution and complex remote sensing images, especially for small objects and shadow-obscured objects.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of 196