Search results

1 – 10 of 10
Article
Publication date: 6 February 2024

Han Wang, Quan Zhang, Zhenquan Fan, Gongcheng Wang, Pengchao Ding and Weidong Wang

To solve the obstacle detection problem in robot autonomous obstacle negotiation, this paper aims to propose an obstacle detection system based on elevation maps for three types…

Abstract

Purpose

To solve the obstacle detection problem in robot autonomous obstacle negotiation, this paper aims to propose an obstacle detection system based on elevation maps for three types of obstacles: positive obstacles, negative obstacles and trench obstacles.

Design/methodology/approach

The system framework includes mapping, ground segmentation, obstacle clustering and obstacle recognition. The positive obstacle detection is realized by calculating its minimum rectangle bounding boxes, which includes convex hull calculation, minimum area rectangle calculation and bounding box generation. The detection of negative obstacles and trench obstacles is implemented on the basis of information absence in the map, including obstacles discovery method and type confirmation method.

Findings

The obstacle detection system has been thoroughly tested in various environments. In the outdoor experiment, with an average speed of 22.2 ms, the system successfully detected obstacles with a 95% success rate, indicating the effectiveness of the detection algorithm. Moreover, the system’s error range for obstacle detection falls between 4% and 6.6%, meeting the necessary requirements for obstacle negotiation in the next stage.

Originality/value

This paper studies how to solve the obstacle detection problem when the robot obstacle negotiation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 January 2024

Siming Cao, Hongfeng Wang, Yingjie Guo, Weidong Zhu and Yinglin Ke

In a dual-robot system, the relative position error is a superposition of errors from each mono-robot, resulting in deteriorated coordination accuracy. This study aims to enhance…

Abstract

Purpose

In a dual-robot system, the relative position error is a superposition of errors from each mono-robot, resulting in deteriorated coordination accuracy. This study aims to enhance relative accuracy of the dual-robot system through direct compensation of relative errors. To achieve this, a novel calibration-driven transfer learning method is proposed for relative error prediction in dual-robot systems.

Design/methodology/approach

A novel local product of exponential (POE) model with minimal parameters is proposed for error modeling. And a two-step method is presented to identify both geometric and nongeometric parameters for the mono-robots. Using the identified parameters, two calibrated models are established and combined as one dual-robot model, generating error data between the nominal and calibrated models’ outputs. Subsequently, the calibration-driven transfer, involving pretraining a neural network with sufficient generated error data and fine-tuning with a small measured data set, is introduced, enabling knowledge transfer and thereby obtaining a high-precision relative error predictor.

Findings

Experimental validation is conducted, and the results demonstrate that the proposed method has reduced the maximum and average relative errors by 45.1% and 30.6% compared with the calibrated model, yielding the values of 0.594 mm and 0.255 mm, respectively.

Originality/value

First, the proposed calibration-driven transfer method innovatively adopts the calibrated model as a data generator to address the issue of real data scarcity. It achieves high-accuracy relative error prediction with only a small measured data set, significantly enhancing error compensation efficiency. Second, the proposed local POE model achieves model minimality without the need for complex redundant parameter partitioning operations, ensuring stability and robustness in parameter identification.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 December 2022

Jiaojiao Liu, Weidong Li, Qi Zou, Shuai Liu, Meng Wang and Jing Zheng

The Chinese government hopes to achieve the goal of benefiting citizens by building a National Integrated Online Government Service Platform (NIOGSP). However, citizens' low…

Abstract

Purpose

The Chinese government hopes to achieve the goal of benefiting citizens by building a National Integrated Online Government Service Platform (NIOGSP). However, citizens' low adoption of the platform makes it difficult for the government to achieve its goal. Research on the influencing factors of citizen adoption of NIOGSP can help the government fully understand the concerns and needs of its citizens and take targeted measures to increase citizen adoption.

Design/methodology/approach

First, this research builds a model of the citizen adoption process, including attention, retention and motivation, based on an observational learning model. Next, research variables are determined based on social cognitive theory, literature review and real-world needs. Finally, based on the questionnaire survey and structural equation model, the influencing factors of each stage of the citizen adoption process model are studied and the relationship between the three stages of the model is verified.

Findings

Results show that perceived usefulness (PU) and self-efficacy (SE) positively affect attention. SE positively affects retention, while perceived privacy (PP) negatively affects retention. PU, social influence, PP and anxiety positively affect motivation.

Originality/value

The conclusion of this study can provide reference for governments in various countries to establish and improve online one-stop government. In addition, this study verifies the citizen adoption process model and finds that there is no obvious causal relationship between attention and retention, but both have positive effects on motivation.

Details

Aslib Journal of Information Management, vol. 75 no. 6
Type: Research Article
ISSN: 2050-3806

Keywords

Article
Publication date: 11 April 2023

Shekhar Rathor, Weidong Xia and Dinesh Batra

Agile principles have been widely used in software development team practice since the creation of the Agile Manifesto. Studies have examined variables related to agile principles…

Abstract

Purpose

Agile principles have been widely used in software development team practice since the creation of the Agile Manifesto. Studies have examined variables related to agile principles without systematically considering the relationships among key team, agile methodology, and process variables underlying the agile principles and how these variables jointly influence the achievement of software development agility. In this study, the authors tested a team/methodology–process–agility model that links team variables (team autonomy and team competence) and methodological variable (iterative development) to process variables (communication and collaborative decision-making), which are in turn linked to software development agility (ability to sense, respond and learn).

Design/methodology/approach

Survey data from one hundred and sixty software development professionals were analyzed using structural equation modeling methods.

Findings

The results support the team/methodology–process–agility model. Process variables (communication and collaborative decision-making) mediated the effects of team (autonomy and competence) and methodological (iterative development) variables on software development agility. In addition, team, methodology and process variables had different effects on the three dimensions of software development agility.

Originality/value

The results contribute to the literature on organizational IT management by establishing a team/methodology–process–agility model that can serve as a basis for developing a core theoretical foundation underlying agile principles and practices. The results also have practical implications for organizations in understanding and managing holistically the different roles that agile methodological, team and process factors play in achieving software development agility.

Details

Information Technology & People, vol. 37 no. 2
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 14 December 2023

Xiwen Zhang, Zhen Zhang, Wenhao Sun, Jilei Hu, Liangliang Zhang and Weidong Zhu

Under the repeated action of the construction load, opening deformation and disturbed deformation occurred at the precast box culvert joints of the shield tunnel. The objective of…

Abstract

Purpose

Under the repeated action of the construction load, opening deformation and disturbed deformation occurred at the precast box culvert joints of the shield tunnel. The objective of this paper is to investigate the effect of construction vehicle loading on the mechanical deformation characteristics of the internal structure of a large-diameter shield tunnel during the entire construction period.

Design/methodology/approach

The structural response of the prefabricated internal structure under heavy construction vehicle loads at four different construction stages (prefabricated box culvert installation, curved lining cast-in-place, lane slab installation and pavement structure casting) was analyzed through field tests and ABAQUS (finite element analysis software) numerical simulation.

Findings

Heavy construction vehicles can cause significant mechanical impacts on the internal structure, as the construction phase progresses, the integrity of the internal structure with the tunnel section increases. The vertical and horizontal deformation of the internal structure is significantly reduced, and the overall stress level of the internal structure is reduced. The bolts connecting the precast box culvert have the maximum stress at the initial stage of construction, as the construction proceeds the stress distribution among the bolts gradually becomes uniform.

Originality/value

This study can provide a reference for the design model, theoretical analysis and construction technology of the internal structure during the construction of large-diameter tunnel projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Expert briefing
Publication date: 24 January 2024

The People’s Democratic Party (PDP) was the winner. Poll campaigning was dominated by debate over the economic headwinds facing the small Himalayan kingdom, which lies between…

Article
Publication date: 14 November 2023

Haocheng Bi, Muming Hao, Baojie Ren, Sun Xinhui, Tianzhao Li and Kailiang Song

The purpose of this paper is to investigate the monitoring of the friction condition of mechanical seals.

Abstract

Purpose

The purpose of this paper is to investigate the monitoring of the friction condition of mechanical seals.

Design/methodology/approach

Acoustic emission signals from the friction of the seal end face were obtained, and their bispectral characteristics were extracted. The variation of non-Gaussian information with the degree of friction was investigated, and by combining bispectral characteristics with information entropy, a bispectral entropy index was established to represent the friction level of the seal end face.

Findings

In the start-up stage, the characteristic frequency amplitude of the micro-convex body contact is obvious, the friction of the end face is abnormal, the complexity of the system increases in a short time and the bispectral entropy rises continuously in a short time. In the stable operation stage, the characteristic frequency amplitude of the micro-convex body contact varies with the intensity of the seal face friction, the seal face friction is stable and the bispectral entropy fluctuates up and down for a period of time.

Originality/value

The bispectral analysis method is applied to the seal friction monitoring, the seal frequency domain characteristics are extracted, the micro-convex body contact characteristic frequency is defined and the bispectral entropy characteristic index is proposed, which provides a certain theoretical basis for the mechanical seal friction monitoring.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0242/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 December 2023

Mustafa Çimen, Damla Benli, Merve İbiş Bozyel and Mehmet Soysal

Vehicle allocation problems (VAPs), which are frequently confronted in many transportation activities, primarily including but not limited to full truckload freight transportation…

Abstract

Purpose

Vehicle allocation problems (VAPs), which are frequently confronted in many transportation activities, primarily including but not limited to full truckload freight transportation operations, induce a significant economic impact. Despite the increasing academic attention to the field, literature still fails to match the needs of and opportunities in the growing industrial practices. In particular, the literature can grow upon the ideas on sustainability, Industry 4.0 and collaboration, which shape future practices not only in logistics but also in many other industries. This review has the potential to enhance and accelerate the development of relevant literature that matches the challenges confronted in industrial problems. Furthermore, this review can help to explore the existing methods, algorithms and techniques employed to address this problem, reveal directions and generate inspiration for potential improvements.

Design/methodology/approach

This study provides a literature review on VAPs, focusing on quantitative models that incorporate any of the following emerging logistics trends: sustainability, Industry 4.0 and logistics collaboration.

Findings

In the literature, sustainability interactions have been limited to environmental externalities (mostly reducing operational-level emissions) and economic considerations; however, emissions generated throughout the supply chain, other environmental externalities such as waste and product deterioration, or the level of stakeholder engagement, etc., are to be monitored in order to achieve overall climate-neutral services to the society. Moreover, even though there are many types of collaboration (such as co-opetition and vertical collaboration) and Industry 4.0 opportunities (such as sharing information and comanaging distribution operations) that could improve vehicle allocation operations, these topics have not yet received sufficient attention from researchers.

Originality/value

The scientific contribution of this study is twofold: (1) This study analyses decision models of each reviewed article in terms of decision variable, constraint and assumption sets, objectives, modeling and solving approaches, the contribution of the article and the way that any of sustainability, Industry 4.0 and collaboration aspects are incorporated into the model. (2) The authors provide a discussion on the gaps in the related literature, particularly focusing on practical opportunities and serving climate-neutrality targets, carried out under four main streams: logistics collaboration possibilities, supply chain risks, smart solutions and various other potential practices. As a result, the review provides several gaps in the literature and/or potential research ideas that can improve the literature and may provide positive industrial impacts, particularly on how logistics collaboration may be further engaged, which supply chain risks are to be incorporated into decision models, and how smart solutions can be employed to cope with uncertainty and improve the effectiveness and efficiency of operations.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 3 October 2023

Zonglin Lei, Zunge Li and Yangyi Xiao

This study aims to investigate the surface modification on 20CrMnTi gear steel individually treated by diamond-like carbon films and nitride coatings.

Abstract

Purpose

This study aims to investigate the surface modification on 20CrMnTi gear steel individually treated by diamond-like carbon films and nitride coatings.

Design/methodology/approach

For this purpose, the mechanical properties of a-C:H, ta-C and AlCrSiN coatings are characterized by nano-indentation and scratch tests. The friction and wear behaviors of these three coatings are evaluated by ball-on-disc tribological experiments under dry contact conditions.

Findings

The results show that the a-C:H coating has the highest coating-substrate adhesion strength (495 mN) and the smoothest surface (Ra is about 0.045 µm) compared with the other two coatings. The AlCrSiN coating shows the highest mean coefficient of friction (COF), whereas the ta-C coating exhibits the lowest one (steady at about 0.16). The carbon-based coatings possess excellent self-lubricating properties compared with nitride ceramic ones, which effectively reduce the COF by about 64%. The major failure mode of carbon-based coatings in dry contact is slight abrasive wear. The damage of AlCrSiN coating is mainly adhesive wear and abrasive wear.

Originality/value

It is suggested that the carbon-based film can effectively improve the friction-reducing and wear resistance performance of the gear steel surface, which has a promising application prospect in the mechanical transmission field.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0129/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 January 2024

Jun Liu, Junyuan Dong, Mingming Hu and Xu Lu

Existing Simultaneous Localization and Mapping (SLAM) algorithms have been relatively well developed. However, when in complex dynamic environments, the movement of the dynamic…

Abstract

Purpose

Existing Simultaneous Localization and Mapping (SLAM) algorithms have been relatively well developed. However, when in complex dynamic environments, the movement of the dynamic points on the dynamic objects in the image in the mapping can have an impact on the observation of the system, and thus there will be biases and errors in the position estimation and the creation of map points. The aim of this paper is to achieve more accurate accuracy in SLAM algorithms compared to traditional methods through semantic approaches.

Design/methodology/approach

In this paper, the semantic segmentation of dynamic objects is realized based on U-Net semantic segmentation network, followed by motion consistency detection through motion detection method to determine whether the segmented objects are moving in the current scene or not, and combined with the motion compensation method to eliminate dynamic points and compensate for the current local image, so as to make the system robust.

Findings

Experiments comparing the effect of detecting dynamic points and removing outliers are conducted on a dynamic data set of Technische Universität München, and the results show that the absolute trajectory accuracy of this paper's method is significantly improved compared with ORB-SLAM3 and DS-SLAM.

Originality/value

In this paper, in the semantic segmentation network part, the segmentation mask is combined with the method of dynamic point detection, elimination and compensation, which reduces the influence of dynamic objects, thus effectively improving the accuracy of localization in dynamic environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 10