Search results

1 – 10 of over 4000
Article
Publication date: 17 June 2019

Ruiju Yang, Wei Zhu, Dora Marinova and Jiuchang Wei

A bad safety accident at a manufacturing company usually results in casualties and economic losses. The company affected by such an accident must deal with pressure from…

Abstract

Purpose

A bad safety accident at a manufacturing company usually results in casualties and economic losses. The company affected by such an accident must deal with pressure from multiple stakeholder groups. Employees, in particular, play a key role in pushing the affected company to develop strategies to improve occupational safety and health. The purpose of this paper is to seek answers to two questions: does a safety accident affect employee behavior in terms of giving up prospects to develop a career at the affected company? If yes, could innovation initiatives adopted by the company help moderate the negative consequences from a safety accident?

Design/methodology/approach

By investigating 120 safety accidents reported by publicly listed Chinese manufacturing companies between 2009 and 2016, the authors conduct an empirical study using regression-based statistical hypotheses testing to describe the companies’ responses and prospects for their employees.

Findings

The results show that the magnitude of the accident and the accident being caused by an employee error positively affect the turnover of employees. Furthermore, technical innovation initiatives, such as spending on R&D, by the accident-affected companies increase the positive effect of the accident magnitude on employee turnover. On the contrary, management innovation initiatives, such as corporate social responsibility activities, weaken the impact of the accident magnitude and employee error on employee turnover.

Originality/value

This study contributes to knowledge development by adding a crisis perspective in human resource management research. It helps to better understand the impact of safety accidents on employee behavior and the response taken by companies through innovation initiatives.

Details

Career Development International, vol. 24 no. 5
Type: Research Article
ISSN: 1362-0436

Keywords

Article
Publication date: 10 November 2021

Guanhua Li, Wei Dong Zhu, Huiyue Dong and Yinglin Ke

This paper aims to present error compensation based on surface reconstruction to improve the positioning accuracy of industrial robots.

Abstract

Purpose

This paper aims to present error compensation based on surface reconstruction to improve the positioning accuracy of industrial robots.

Design/methodology/approach

In previous research, it has been proved that the positioning error of industrial robots is continuous on the two-dimensional manifold of six-joint space. The point cloud generated by positioning error data can be used to fit the continuous surfaces, which makes it possible to apply surface reconstruction on error compensation. The moving least-squares interpolation and the B-spline method are used for the error surface reconstruction.

Findings

The results of experiments and simulations validate the effectiveness of error compensation by the moving least-squares interpolation and the B-spline method.

Practical implications

The proposed methods can control the average of compensated positioning error within 0.2 mm, which meets the requirement of a tolerance (±0.5 mm) for fastener hole drilling in aircraft assembly.

Originality/value

The error surface reconstruction based on the B-spline method has great superiority because fewer sample points are needed to use this method than others while keeping the compensation accuracy at the same level. The control points of the B-spline error surface can be adjusted with measured data, which can be applied for the error prediction in any temperature field.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 October 2018

Yunsong Shi, Wei Zhu, Chunze Yan, Jinsong Yang and Zhidao Xia

This study aims to report the preparation, selective laser sintering (SLS) processing and properties of a new nylon elastomer powder. The effects of solvent, dissolution…

Abstract

Purpose

This study aims to report the preparation, selective laser sintering (SLS) processing and properties of a new nylon elastomer powder. The effects of solvent, dissolution temperature and time and cooling method and speed on the particle size and morphologies of the prepared nylon elastomer powder are investigated.

Design/methodology/approach

The prepared nylon elastomer power possesses the particle size of around 50 mm and is spherical in shape, indicating that this study provides the feasible dissolution-precipitation process, a distillation cooling method and a suitable solvent to prepare nylon elastomer powders.

Findings

Compared to pure nylon 12, the nylon elastomer has a lower part bed temperature and a wider sintering window for the SLS process. The wider sintering window indicates the better SLS processibility. The lower part bed temperature is beneficial to the recycling of material and the decrease in the requirement of SLS equipment.

Originality/value

The nylon elastomer in this study has a lower part bed temperature and a wider sintering window for the SLS process. The wider sintering window indicates better SLS processibility. The lower part bed temperature is beneficial to the recycling of material and the decrease in the requirement of SLS equipment.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 June 2016

Wei Zhu, Chunze Yan, Yunsong Shi, Shifeng Wen, Changjun Han, Chao Cai, Jie Liu and Yusheng Shi

Semi-crystalline polymers such as polyamide-12 can be used for selective laser sintering (SLS) to make near-fully dense plastic parts. At present, however, the types of…

Abstract

Purpose

Semi-crystalline polymers such as polyamide-12 can be used for selective laser sintering (SLS) to make near-fully dense plastic parts. At present, however, the types of semi-crystalline polymers suitable for SLS are critically limited. Therefore, the purpose of this paper is to investigate the processibility of a new kind of semi-crystalline polypropylene (PP) with low isotacticity for SLS process.

Design/methodology/approach

The SLS processibility of the PP powder, including particle size and shape, sintering window, degree of crystallinity and degradation temperature, was evaluated. Effects of the applied laser energy density on the surface micromorphology, density, tensile strength and thermal properties of SLS-built PP specimens were studied.

Findings

The results show that the PP powder has a nearly spherical shape, smooth surfaces, an appropriate average particle size of 63.6 μm, a broad sintering window of 21 oC and low crystalline degree of 30.4 per cent comparable to that of polyamide-12, a high degradation temperature of 381.8°C and low part bed temperature of 105°C, indicating a very good SLS processibility. The density and the tensile strength first increase with increasing laser energy density until they reach the maximum values of 0.831 g/cm3 and 19.9 MPa, respectively, at the laser energy density of 0.0458 J/mm2, and then decrease when the applied laser energy density continue to increase owing to the degradation of PP powders. The complex PP components have been manufactured by SLS using the optimum parameters, which are strong enough to be directly used as functional parts.

Originality/value

This paper provides a new knowledge for this field that low-isotacticity PPs exhibit good SLS processibility, therefore increasing material types and broadening the application of SLS technology.

Details

Rapid Prototyping Journal, vol. 22 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 18 May 2022

Ziwei Ma, Tonghui Wang, Zheng Wei and Xiaonan Zhu

The purpose of this study is to extend the classical noncentral F-distribution under normal settings to noncentral closed skew F-distribution for dealing with independent…

Abstract

Purpose

The purpose of this study is to extend the classical noncentral F-distribution under normal settings to noncentral closed skew F-distribution for dealing with independent samples from multivariate skew normal (SN) distributions.

Design/methodology/approach

Based on generalized Hotelling's T2 statistics, confidence regions are constructed for the difference between location parameters in two independent multivariate SN distributions. Simulation studies show that the confidence regions based on the closed SN model outperform the classical multivariate normal model if the vectors of skewness parameters are not zero. A real data analysis is given for illustrating the effectiveness of our proposed methods.

Findings

This study’s approach is the first one in literature for the inferences in difference of location parameters under multivariate SN settings. Real data analysis shows the preference of this new approach than the classical method.

Research limitations/implications

For the real data applications, the authors need to remove outliers first before applying this approach.

Practical implications

This study’s approach may apply many multivariate skewed data using SN fittings instead of classical normal fittings.

Originality/value

This paper is the research paper and the authors’ new approach has many applications for analyzing the multivariate skewed data.

Details

Asian Journal of Economics and Banking, vol. 6 no. 2
Type: Research Article
ISSN: 2615-9821

Keywords

Content available
Article
Publication date: 17 October 2019

Weihong Zhang, Sofiane Guessasma and Jihong Zhu

228

Abstract

Details

Rapid Prototyping Journal, vol. 25 no. 9
Type: Research Article
ISSN: 1355-2546

Article
Publication date: 3 May 2016

Linxian Ji, Chong Wang, Shouxu Wang, Kai Zhu, Wei He and Dingjun Xiao

The uniformity of electrodeposition is the key to successful application of pattern plating because the quality of electrodeposited copper layer has a huge impact on the…

Abstract

Purpose

The uniformity of electrodeposition is the key to successful application of pattern plating because the quality of electrodeposited copper layer has a huge impact on the performance of printed circuit boards (PCBs). The multi-physics coupling technology was used to accurately analyze and forecast the characteristics of electrochemical system. Further, an optimized plating bath was used to achieve a uniform electrodeposition.

Design/methodology/approach

A multi-physics coupling numerical simulation based on the finite element method was used to optimize electrodeposition conditions in pattern plating process. The influences of geometric and electrochemical factors on uniformity of current distribution and electrodeposited layer thickness were discussed by multi-physics coupling.

Findings

The model results showed that the distance between cathode and anode and the insulating shield had a great impact on uniformity of electrodeposition. By numerical simulation, it had been proved that using an auxiliary cathode was an effective and simple way to improve uniformity of electrodeposition due to redistributing of the current. This helped to achieve more uniform surface of the copper patterns by preventing the edge effect and the roughness of the copper layer was reduced to 1 per cent in the secondary current distribution model.

Research limitations/implications

The research is still in progress with the development of high-performance computers.

Practical implications

A multi-physics coupling platform is an excellent tool for quickly and cheaply studying the process behaviors under a variety of operating conditions.

Social implications

The numerical simulation method has laid the foundation for the design and improvement of the plating bath.

Originality/value

By multi-physics coupling technology, we built a bridge between theoretical and experimental study for control of uniformity of pattern plating in PCB manufacturing. This method can help optimize the design of plating bath and uniformity of pattern plating in PCB manufacturing.

Details

Circuit World, vol. 42 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 12 October 2020

Xin Wu, Canjun Yang, Yuanchao Zhu, Weitao Wu and Qianxiao Wei

This paper aims to present a natural human–robot teleoperation system, which capitalizes on the latest advancements of monocular human pose estimation to simplify scenario…

Abstract

Purpose

This paper aims to present a natural human–robot teleoperation system, which capitalizes on the latest advancements of monocular human pose estimation to simplify scenario requirements on heterogeneous robot arm teleoperation.

Design/methodology/approach

Several optimizations in the joint extraction process are carried on to better balance the performance of the pose estimation network. To bridge the gap between human joint pose in Cartesian space and heterogeneous robot joint angle pose in Radian space, a routinized mapping procedure is proposed.

Findings

The effectiveness of the developed methods on joint extraction is verified via qualitative and quantitative experiments. The teleoperation experiments on different robots validate the feasibility of the system controlling.

Originality/value

The proposed system provides an intuitive and efficient human–robot teleoperation method with low-cost devices. It also enhances the controllability and flexibility of robot arms by releasing human operator from motion constraints, paving a new way for effective robot teleoperation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 4000