Search results
1 – 10 of over 7000Qingchao Sun, Xiaokai Mu, Bo Yuan, Jiawen Xu and Wei Sun
This paper aims to distinguish the relationship between the morphology characteristics of different scales and the contact performance of the mating surfaces. Also, an integrated…
Abstract
Purpose
This paper aims to distinguish the relationship between the morphology characteristics of different scales and the contact performance of the mating surfaces. Also, an integrated method of the spectrum analysis and the wavelet transform is used to separate the morphology characteristics of the actual machined parts.
Design/methodology/approach
First, a three-dimensional (3D) surface profilometer is used to obtain the surface morphology data of the actual machined parts. Second, the morphology characteristics of different scales are realized by the wavelet analysis and the power spectral density. Third, the reverse modeling engineering is used to construct the 3D contact models for the macroscopic characteristics. Finally, the finite element method is used to analyze the contact stiffness and the contact area of the 3D contact model.
Findings
The contact area and the nominal contact pressure Pn have a nonlinear relationship in the whole compression process for the 3D contact model. The percentage of the total contact area of the macro-scale mating surface is about 70 per cent when the contact pressure Pn is in the range of 0-100 MPa, and the elastic contact area accounts for the vast majority. Meanwhile, when the contact pressure Pn is less than 10MPa, the influence factor (the relative error of contact stiffness) is larger than 50 per cent, so the surface macro-scale morphology has a weakening effect on the normal contact stiffness of the mating surfaces.
Originality/value
This paper provides an effective method for the multi-scale separation of the surface morphology and then lays a certain theoretical foundation for improving the surface quality of parts and the morphology design.
Details
Keywords
Wei Sun, Xiaokai Mu, Qingchao Sun, Zhiyong Sun and Xiaobang Wang
This paper aims to comprehensively achieve the requirements of high assembly precision and low cost, a precision-cost model of assembly based on three-dimensional (3D) tolerance…
Abstract
Purpose
This paper aims to comprehensively achieve the requirements of high assembly precision and low cost, a precision-cost model of assembly based on three-dimensional (3D) tolerance is established in this paper.
Design/methodology/approach
The assembly precision is related to the tolerance of parts and the deformation of matching surfaces under load. In this paper, the small displacement torsor (SDT) theory is first utilized to analyze the manufacturing tolerances of parts and the assembly deformation deviation of matching surface. In the meanwhile, the extracting method of SDT parameters is proposed and the assembly precision calculation model based on the 3D tolerance is established. Second, an integrated optimization model based on the machining cost, assembly cost (mapping the deviation domain to the SDT domain) and quality loss cost is built. Finally, the practicability of the precision-cost model is verified by optimizing the horizontal machining center.
Findings
The assembly deviation has a great influence on cost fluctuation. By setting the optimization objective to maximize the assembly precision, the optimal total cost is CNY 72.77, decreasing by 16.83 per cent from the initial value, which meets economical requirements. Meanwhile, the upper bound of each processing tolerance is close to the maximum value of 0.01 mm, indicating that the load deformation can be offset by appropriately increasing the upper bound of the tolerance, but it is necessary to strictly restrict the manufacturing tolerances of lower parts in a reasonable range.
Originality/value
In this paper, a 3D deviation precision-cost model of assembly is established, which can describe the assembly precision more accurately and achieve a lower cost compared with the assembly precision model based on rigid parts.
Details
Keywords
Haishan Liang, Wei Sun, M.M. Fonseka and Feng Zhou
The purpose of this paper is to investigate the relationships between different types of team goal orientations (team learning orientation, team prove orientation and team avoid…
Abstract
Purpose
The purpose of this paper is to investigate the relationships between different types of team goal orientations (team learning orientation, team prove orientation and team avoid orientation) and team performance in new product development (NPD) and how these relationships are mediated by team absorptive capacity.
Design/methodology/approach
Data were collected through two surveys from 71 NPD teams and analyzed by the confirmatory factor analysis, correlation and hierarchical regression analysis methods.
Findings
The authors find that both teams’ learning and prove orientations are positively related to their absorptive capacity, which leads to increasing team performance in NPD. Further, the authors find support for the mediating role of team absorptive capacity in connecting team learning orientation and team prove orientation with team performance in NPD.
Practical implications
For practitioners, this paper suggests that to benefit from their NPD team efforts, firms with innovative aspirations should consider their existing and desired access to external knowledge sources and particularly the extent to which they can successfully integrate external knowledge with their internal knowledge structure.
Originality/value
The explication of team absorptive capacity is as a key mechanism through which different goal orientations of NPD teams inform the ability to successfully develop new products. By integrating the concepts of team goal orientations, team absorptive capacity and team performance in NPD, the authors seek to gain a better understanding of why some firms are more likely to do better than others in NPD. Findings of this paper extend concept of the nomological network on how absorptive capacity may serve as a direct outcome of different goal orientations. This paper responds to how Chinese firms can increase their innovative performance by infusing their current knowledge bases with external knowledge and extends the literature on knowledge management and managerial ties on innovation.
Details
Keywords
Yigong Liu, Qudus Hamid, Jessica Snyder, Chengyang Wang and Wei Sun
This paper aims to present a solid freeform fabrication-based in situ three-dimensional (3D) printing method. This method enables simultaneous cross-linking alginate at ambient…
Abstract
Purpose
This paper aims to present a solid freeform fabrication-based in situ three-dimensional (3D) printing method. This method enables simultaneous cross-linking alginate at ambient environmental conditions (temperature and pressure) for 3D-laden construct fabrication. The fabrication feasibility and potentials in biomedical applications were evaluated.
Design/methodology/approach
Fabrication feasibility was evaluated as the investigation of fabrication parameters on strut formability (the capability to fabricate a cylindrical strut in the same diameter as dispensing tip) and structural stability (the capability to hold the fabricated 3D-laden construct against mechanical disturbance). Potentials in biomedical application was evaluated as the investigation on structural integrity (the capability to preserve the fabricated 3D-laden construct in cell culture condition).
Findings
Strut formability can be achieved when the flow rate of alginate suspension and nozzle travel speed are set according to the dispensing tip size, and extruded alginate was cross-linked sufficiently. A range of cross-linking-related fabrication parameters was determined for sufficient cross-link. The structural stability and structural integrity were found to be controlled by alginate composition. An optimized setting of the alginate composition and the fabrication parameters was determined for the fabrication of a desired stable scaffold with structural integrity for 14 days.
Originality/value
This paper reports that in situ 3D printing is an efficient method for 3D-laden construct fabrication and its potentials in biomedical application.
Details
Keywords
Xiaokai Mu, Qingchao Sun, Wei Sun, Yunlong Wang, Chuanhua Wang and Xiaobang Wang
The traditional precision design only takes the influence of geometric tolerance of the parts and does not involve the load deformation in the assembly process. This paper aims to…
Abstract
Purpose
The traditional precision design only takes the influence of geometric tolerance of the parts and does not involve the load deformation in the assembly process. This paper aims to analyze the influence mechanism of flexible parts deformation on the geometric precision, and then to ensure the reliability and stability of the mechanical system.
Design/methodology/approach
Firstly, this paper adopts the N-GPS to analyze the influence mechanism of flexible parts deformation on the geometric precision and constructs a coupling 3D tolerance mathematical model of the geometric tolerance and the load deformation deviation based on the SDT theory, homogeneous coordinate transformation theory and surface authentication idea. Secondly, the least square method is used to fit the deformation surface of the mating surface under load so as to complete the conversion from the non-ideal element to the ideal element.
Findings
This paper takes the horizontal machining center as a case to obtain the deformation information of the mating surface under the self-weight load. The results show that the deformation deviation of the parts has the trend of transmission and accumulation under the load. The terminal deformation cumulative amount of the system is up to –0.0249 mm, which indicated that the influence of parts deformation on the mechanical system precision cannot be ignored.
Originality/value
This paper establishes a comprehensive 3D tolerance mathematical model, which comprehensively considers the effect of the dimensional tolerance, geometric tolerance and load deformation deviation. By this way, the assembly precision of mechanical system can be accurately predicted.
Details
Keywords
Shijie Jiang, Mingyu Sun, Yang Zhan, Hui Li and Wei Sun
The purpose of this study is to set up a dynamic model of material extrusion (ME) additive manufacturing plates for the prediction of their dynamic behavior (i.e. dynamic inherent…
Abstract
Purpose
The purpose of this study is to set up a dynamic model of material extrusion (ME) additive manufacturing plates for the prediction of their dynamic behavior (i.e. dynamic inherent characteristic, resonant response and damping) and also carry out its experimental validation and sensitivity analysis.
Design/methodology/approach
Based on the classical laminated plate theory, a dynamic model is established using the orthogonal polynomials method, taking into account the effect of lamination and orthogonal anisotropy. The dynamic inherent characteristics of the ME plate are worked out by Ritz method. The frequency-domain dynamic equations are then derived to solve the plates’ resonant responses, with which the damping ratio is figured out according to the half-power bandwidth method. Subsequently, a series of experimental tests are performed on the ME samples to obtain the measured data.
Findings
It is shown that the predictions and measurements in terms of dynamic behavior are in good agreement, validating the accuracy of the developed model. In addition, sensitivity analysis shows that increasing the elastic modulus or Poisson’s ratio will increase the corresponding natural frequency of the ME plate but decrease the resonant response. When the density is increased, both the natural frequency and resonant response will be decreased.
Research limitations/implications
Future research can be focused on using the proposed model to investigate the effect of processing parameters on the ME parts’ dynamic behavior.
Practical implications
This study shows theoretical basis and technical insight into improving the forming quality and reliability of the ME parts.
Originality/value
A novel reliable dynamic model is set up to provide theoretical basis and principle to reveal the physical phenomena and mechanism of ME parts.
Details
Keywords
Ming Li, Hongwei Liu, Juan Du, Zhixun Wen, Zhufeng Yue and Wei Sun
This paper presents a review concerning the analytical and inverse methods of small punch creep test (SPCT) in order to evaluate the mechanical property of component material at…
Abstract
Purpose
This paper presents a review concerning the analytical and inverse methods of small punch creep test (SPCT) in order to evaluate the mechanical property of component material at elevated temperature.
Design/methodology/approach
In this work, the effects of temperature, specimen size and shape on material properties are mainly discussed using the finite element (FE) method. The analytical approaches including membrane stretching, empirical or semi-empirical solutions that are currently used for data interpretation have been presented.
Findings
The state-of-the-art research progress on the inverse method, such as non-linear optimization program and neutral network, is critically reviewed. The capabilities of the inverse technique, the uniqueness of the solution and future development are discussed.
Originality/value
The state-of-the-art research progress on the inverse method such as non-linear optimization program and neutral network is critically reviewed. The capabilities of the inverse technique, the uniqueness of the solution and future development are discussed.
Details
Keywords
Wei‐qiang Sun, Jin‐sheng Li and Pei‐lin Hong
Multicasting is a necessity for a broadband metro‐area‐network. Discusses the security problems with current multicast protocols. To make the multicast delivery infrastructure…
Abstract
Multicasting is a necessity for a broadband metro‐area‐network. Discusses the security problems with current multicast protocols. To make the multicast delivery infrastructure more secure and reliable, a stateful multicast access control mechanism, based on MAPE, is proposed. This mechanism expands the current forwarding procedure of a layer 2 switch so that stateful multicast access control can be carried out at the very edge of the metro area network. The architecture of MAPE is discussed in detail, as well as the states maintained and messages exchanged. Further explains that the scheme is flexible and scalable.
Details
Keywords
Feng Lin, Wei Sun and Yongnian Yan
A mathematical model to predict the layered process error and an optimization algorithm to define the fabricating orientation based on the minimum process error for layered…
Abstract
A mathematical model to predict the layered process error and an optimization algorithm to define the fabricating orientation based on the minimum process error for layered manufacturing fabrication has been developed. Case studies to determine the preferred orientation candidates for fabricating spherical objects, cube objects and objects with irregular geometrical shapes have been conducted and the results were used to validate the sensitivity, accuracy, and capability of the developed model and optimization algorithm. Different orientation candidates determined by minimum processing error and by minimum processing time were also compared. The developed model and the optimization algorithm can be used, in conjunction with other processing parameters such as processing time and support structure, to define an optimal processing planning for layered manufacturing fabrication.
Details
Keywords
Wei Sun, Shuai Yang, Junnan Gao and Xianfei Yan
It is very important to create a useful cyclic symmetric model for the investigation of the vibration reduction effect of hard-coating blisk. This study aims to develop a cyclic…
Abstract
Purpose
It is very important to create a useful cyclic symmetric model for the investigation of the vibration reduction effect of hard-coating blisk. This study aims to develop a cyclic symmetry algorithm which can determine the mode of blisk in the sector coordinate system directly.
Design/methodology/approach
Using the exponential and real quasi-equivalent Fourier matrices, the formulas for solving the sector mode were derived, and the relationship between the two kinds of sector modes was also discussed. Based on the proposed cyclic symmetry algorithm, the vibration characteristics of an academic blisk were solved, and the formulas for solving the natural characteristics and vibration responses of the coated blisk were given.
Findings
A blisk with NiCrAlCoY+YSZ hard coating on both sides of each blade was chosen as a case to demonstrate the presented method. Based on the verification analysis model, the influences of coating thickness on the vibration reduction effect of the blisk were discussed. The results show that the hard coating has good vibration reduction effect on the blisk even the coating thickness is very thin and the vibration reduction effect of hard coating in the high frequency range is obviously better than that in the low frequency range.
Originality/value
As a large number of reduced order modeling methods of blisk are implemented based on the sector modes, the proposed method which can obtain the sector modes directly will significantly improve the efficiency of dynamic modeling and analysis of the coated blisk structure.
Details