Search results

1 – 10 of 280
Book part
Publication date: 25 October 2023

Mohammad Raziuddin Chowdhury, Md Sakib Ullah Sourav and Rejwan Bin Sulaiman

From the perspective of any nation, rural areas generally present a comparable set of problems, such as a lack of proper healthcare, education, living conditions, wages and market…

Abstract

From the perspective of any nation, rural areas generally present a comparable set of problems, such as a lack of proper healthcare, education, living conditions, wages and market opportunities. Some nations have created and developed the concept of smart villages during the previous few decades, which effectively addresses these issues. The landscape of traditional agriculture has been radically altered by digital agriculture, which has also had a positive economic impact on farmers and those who live in rural regions by ensuring an increase in agricultural production. We explored current issues in rural areas, and the consequences of smart village applications, and then illustrate our concept of smart village from recent examples of how emerging digital agriculture trends contribute to improving agricultural production in this chapter.

Details

Technology and Talent Strategies for Sustainable Smart Cities
Type: Book
ISBN: 978-1-83753-023-6

Keywords

Article
Publication date: 7 October 2022

Ipsit Kumar Dhal, Saroj Kumar and Dayal R. Parhi

This study aims to modify a nature-based numerical method named the invasive weed optimization (IWO) method for mobile robot path planning in various complex environments.

Abstract

Purpose

This study aims to modify a nature-based numerical method named the invasive weed optimization (IWO) method for mobile robot path planning in various complex environments.

Design/methodology/approach

The existing IWO method is quick in converging to a feasible solution but in a complex environment; it takes more time as well as computational resources. So, in this paper, the computational part of this artificial intelligence technique is modified with the help of recently developed evolution algorithms like particle swarm optimization, genetic algorithm, etc. Some conditional logic statements were used while doing sensor-based mapping for exploring complex paths. Implementation of sensor-based exploration, mathematical IWO method and prioritizing them for better efficiency made this modified IWO method take complex dynamic decisions.

Findings

The proposed modified IWO is better for dynamic obstacle avoidance and navigating a long complex map. The deviation of results in simulation and experiments is less than 5.5%, which validates a good agreement between simulation and real-time testing platforms.

Originality/value

As per a deep literature review, it has found that the proposed approach has not been implemented on the Khepera-III robot for smooth motion planning. Here a dynamic obstacle mapping feature is implemented. A method to selectively distribute seeds instead of a random normal distribution is also implemented in this work. The modified version of IWO is coded in MATLAB and simulated through V-Rep simulation software. The integration of sensors was done through logical conditioning. The simulation results are validated using real-time experiments.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 19 April 2024

Andrew Dudash and Jacob E. Gordon

The purpose of this case study was to complement existing weeding and retention criteria beyond the most used methods in academic libraries and to consider citation counts in the…

Abstract

Purpose

The purpose of this case study was to complement existing weeding and retention criteria beyond the most used methods in academic libraries and to consider citation counts in the identification of important scholarly works.

Design/methodology/approach

Using a small sample of items chosen for withdrawal from a small liberal arts college library, this case study looks at the use of Google Scholar citation counts as a metric for identification of notable monographs in the social sciences and mathematics.

Findings

Google Scholar citation counts are a quick indicator of classic, foundational or discursive monographs in a particular field and should be given more consideration in weeding and retention analysis decisions that impact scholarly collections. Higher citation counts can be an indicator of higher circulation counts.

Originality/value

The authors found little indication in the literature that Google Scholar citation counts are being used as a metric for identification of notable works or for retention of monographs in academic libraries.

Details

Collection and Curation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9326

Keywords

Article
Publication date: 7 November 2023

Robert Bogue

The purpose of this paper is to provide details of recent developments in agricultural robots with an emphasis of those that address labour shortages and environmental issues.

Abstract

Purpose

The purpose of this paper is to provide details of recent developments in agricultural robots with an emphasis of those that address labour shortages and environmental issues.

Design/methodology/approach

Following an introduction which highlights some of the challenges facing the agricultural industry, this discusses recent robotic agricultural vehicle developments and the enabling technologies. It then provides examples of terrestrial and airborne robots employed in precision agricultural practices. Finally, brief conclusions are drawn.

Findings

Traditional, labour-intensive and environmentally harmful agricultural practices are not sustainable in the long term, and if food supply is to meet future demand, radical changes will be required. Exploiting recent advances in artificial intelligence (AI), agricultural equipment manufacturers are developing robotic vehicles in response to labour shortages. Precision agricultural practices will mitigate many of the detrimental environmental impacts and can also reduce the reliance on manpower. Weeding robots which reduce or eliminate the use of herbicides have been commercialised by a growing number of companies and again exploit AI techniques. Drones equipped with imaging device are playing an increasingly important role by characterising agricultural and crop conditions, thereby allowing highly targeted agrochemical application.

Originality/value

This illustrates how the agricultural industry is adopting robotic technology in response to the need to increased productivity while mitigating the problems of shortages of labour and environmental degradation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Case study
Publication date: 17 October 2023

Muneebah Jabeen and Virginia Bodolica

The learning outcomes of this study are to estimate the complexities associated with the management of a novel business idea in the context of emerging markets; to demonstrate an…

Abstract

Learning outcomes

The learning outcomes of this study are to estimate the complexities associated with the management of a novel business idea in the context of emerging markets; to demonstrate an understanding of entrepreneurial action and strategic adaptation under various challenges of the business world; to apply the principles of design thinking and innovation to analyze the sustainability of a social enterprise; and to evaluate the pros and cons of different strategic options and provide viable recommendations for future development.

Case overview/synopsis

Many riverine communities in Nigeria battled water hyacinth spread for decades, until Achenyo Idachaba-Obaro contributed her time, creativity and innovation to resolve the issue. She sacrificed her successful computer science career in the USA to launch her social enterprise, MitiMeth. The startup aimed to resolve the unaddressed environmental problems of her home country and to provide a decent living to the vulnerable community of indigenous artisans. This case study discusses Idachaba-Obaro’s efforts in researching the alternative usages of the water hyacinth weed under the condition of a limited availability of resources. Considering Nigeria’s creative arts culture and dismal socioeconomic conditions, she chose to weave the weed into handmade artifacts by educating herself and training local artisans to manufacture and sell handicrafts in the market. To receive financial support and attract environmentally conscious customers, Idachaba-Obaro had to participate in funding competitions, regularly attend exhibitions and partner with private entities, nongovernmental organizations (NGOs) and government authorities. This case study further elaborates on multiple hindrances associated with female entrepreneurial activities in a conservative Nigerian society characterized by marginalization, social stigma and gender-based stereotypes. Despite many challenges ensuing from a limited market access in rural areas, high unemployment rates and low levels of disposable incomes in the country, MitiMeth ambitioned to maintain its culture of creativity and innovation. The team regularly studied materials used and conducted brainstorming sessions with artisans to launch new items, improve existing products and incorporate needed alterations based on customer feedback and special demands. MitiMeth made its notable contribution toward the achievement of several sustainable development goals, while striving to continuously increase remittances to working artisans. Recently, the company was challenged by the vertiginous technological advancements of the digital era, as many businesses around the globe used machines to upscale their operations. Idachaba-Obaro pondered whether she should use technology in product manufacturing processes or focus on her commitment to provide a livelihood to local artisans and preserve the authentic look-and-feel of handmade crafts.

Complexity academic level

This case study is for an upper-level undergraduate audience.

Supplementary material

Teaching notes are available for educators only.

Subject code

CCS 3: Entrepreneurship.

Article
Publication date: 27 September 2023

Behzad Paryzad and Kourosh Eshghi

This paper aims to conduct a fuzzy discrete time cost quality risk in the ambiguous mode CO2 tradeoff problem (FDTCQRP*TP) in a megaproject based on fuzzy ground.

Abstract

Purpose

This paper aims to conduct a fuzzy discrete time cost quality risk in the ambiguous mode CO2 tradeoff problem (FDTCQRP*TP) in a megaproject based on fuzzy ground.

Design/methodology/approach

A combinatorial evolutionary algorithm using Fuzzy Invasive Weed Optimization (FIWO) is used in the discrete form of the problem where the parameters are fully fuzzy multi-objective and provide a space incorporating all dimensions of the problem. Also, the fuzzy data and computations are used with the Chanas method selected for the computational analysis. Moreover, uncertainty is defined in FIWO. The presented FIWO simulation, its utility and superiority are tested on sample problems.

Findings

The reproduction, rearrangement and maintaining elite invasive weeds in FIWO can lead to a higher level of accuracy, convergence and strength for solving FDTCQRP*TP fuzzy rules and a risk ground in the ambiguous mode with the emphasis on the necessity of CO2 pollution reduction. The results reveal the effectiveness of the algorithm and its flexibility in the megaproject managers' decision making, convergence and accuracy regarding CO2 pollution reduction.

Originality/value

This paper offers a multi-objective fully fuzzy tradeoff in the ambiguous mode with the approach of CO2 pollution reduction.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 February 2022

Hingmire Vishal Sharad, Santosh R. Desai and Kanse Yuvraj Krishnrao

In a wireless sensor network (WSN), the sensor nodes are distributed in the network, and in general, they are linked through wireless intermediate to assemble physical data. The…

Abstract

Purpose

In a wireless sensor network (WSN), the sensor nodes are distributed in the network, and in general, they are linked through wireless intermediate to assemble physical data. The nodes drop their energy after a specific duration because they are battery-powered, which also reduces network lifetime. In addition, the routing process and cluster head (CH) selection process is the most significant one in WSN. Enhancing network lifetime through balancing path reliability is more challenging in WSN. This paper aims to devise a multihop routing technique with developed IIWEHO technique.

Design/methodology/approach

In this method, WSN nodes are simulated originally, and it is fed to the clustering process. Meanwhile, the CH is selected with low energy-based adaptive clustering model with hierarchy (LEACH) model. After CH selection, multipath routing is performed by developed improved invasive weed-based elephant herd optimization (IIWEHO) algorithm. In addition, the multipath routing is selected based on certain fitness functions like delay, energy, link quality and distance. However, the developed IIWEHO technique is the combination of IIWO method and EHO algorithm.

Findings

The performance of developed optimization method is estimated with different metrics, like distance, energy, delay and throughput and achieved improved performance for the proposed method.

Originality/value

This paper presents an effectual multihop routing method, named IIWEHO technique in WSN. The developed IIWEHO algorithm is newly devised by incorporating EHO and IIWO approaches. The fitness measures, which include intra- and inter-distance, delay, link quality, delay and consumption of energy, are considered in this model. The proposed model simulates the WSN nodes, and CH selection is done by the LEACH protocol. The suitable CH is chosen for transmitting data through base station from the source to destination. Here, the routing system is devised by a developed optimization technique. The selection of multipath routing is carried out using the developed IIWEHO technique. The developed optimization approach selects the multipath depending on various multi-objective functions.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 5 April 2024

Ting Zhou, Yingjie Wei, Jian Niu and Yuxin Jie

Metaheuristic algorithms based on biology, evolutionary theory and physical principles, have been widely developed for complex global optimization. This paper aims to present a…

Abstract

Purpose

Metaheuristic algorithms based on biology, evolutionary theory and physical principles, have been widely developed for complex global optimization. This paper aims to present a new hybrid optimization algorithm that combines the characteristics of biogeography-based optimization (BBO), invasive weed optimization (IWO) and genetic algorithms (GAs).

Design/methodology/approach

The significant difference between the new algorithm and original optimizers is a periodic selection scheme for offspring. The selection criterion is a function of cyclic discharge and the fitness of populations. It differs from traditional optimization methods where the elite always gains advantages. With this method, fitter populations may still be rejected, while poorer ones might be likely retained. The selection scheme is applied to help escape from local optima and maintain solution diversity.

Findings

The efficiency of the proposed method is tested on 13 high-dimensional, nonlinear benchmark functions and a homogenous slope stability problem. The results of the benchmark function show that the new method performs well in terms of accuracy and solution diversity. The algorithm converges with a magnitude of 10-4, compared to 102 in BBO and 10-2 in IWO. In the slope stability problem, the safety factor acquired by the analogy of slope erosion (ASE) is closer to the recommended value.

Originality/value

This paper introduces a periodic selection strategy and constructs a hybrid optimizer, which enhances the global exploration capacity of metaheuristic algorithms.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Abstract

Details

Sport and Tourism
Type: Book
ISBN: 978-1-83753-241-4

Article
Publication date: 8 April 2024

Matthew Peebles, Shen Hin Lim, Mike Duke, Benjamin Mcguinness and Chi Kit Au

Time of flight (ToF) imaging is a promising emerging technology for the purposes of crop identification. This paper aim to presents localization system for identifying and…

Abstract

Purpose

Time of flight (ToF) imaging is a promising emerging technology for the purposes of crop identification. This paper aim to presents localization system for identifying and localizing asparagus in the field based on point clouds from ToF imaging. Since the semantics are not included in the point cloud, it contains the geometric information of other objects such as stones and weeds other than asparagus spears. An approach is required for extracting the spear information so that a robotic system can be used for harvesting.

Design/methodology/approach

A real-time convolutional neural network (CNN)-based method is used for filtering the point cloud generated by a ToF camera, allowing subsequent processing methods to operate over smaller and more information-dense data sets, resulting in reduced processing time. The segmented point cloud can then be split into clusters of points representing each individual spear. Geometric filters are developed to eliminate the non-asparagus points in each cluster so that each spear can be modelled and localized. The spear information can then be used for harvesting decisions.

Findings

The localization system is integrated into a robotic harvesting prototype system. Several field trials have been conducted with satisfactory performance. The identification of a spear from the point cloud is the key to successful localization. Segmentation and clustering points into individual spears are two major failures for future improvements.

Originality/value

Most crop localizations in agricultural robotic applications using ToF imaging technology are implemented in a very controlled environment, such as a greenhouse. The target crop and the robotic system are stationary during the localization process. The novel proposed method for asparagus localization has been tested in outdoor farms and integrated with a robotic harvesting platform. Asparagus detection and localization are achieved in real time on a continuously moving robotic platform in a cluttered and unstructured environment.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 280