Search results

1 – 10 of 75
Content available
Article
Publication date: 1 April 2005

199

Abstract

Details

Industrial Lubrication and Tribology, vol. 57 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 January 2019

Guo-yuan Zhang, Jia-qi Dang, Wei-gang Zhao and Xiu-tian Yan

The serious friction and wear problem occurs on the mechanical seal’s faces during the start-up stage of the high-speed turbopump for a liquid rocket engine. This paper aims to…

338

Abstract

Purpose

The serious friction and wear problem occurs on the mechanical seal’s faces during the start-up stage of the high-speed turbopump for a liquid rocket engine. This paper aims to propose a kind of thick metal alloy coatings on the surface of the seal’s rotor so as reduce the friction and wear.

Design/methodology/approach

With the pin-disk (the graphite pin and the disk with the metal coating) tribology-tester, the tribological behaviors of four metal coatings are investigated. The special friction coefficients under the dry friction, boundary friction and different temperatures of water-lubricated conditions were obtained.

Findings

The test results show that the thick metal coating has a good performance of the wear resistance and friction reduction; and the friction coefficients of a Sn-Sb-Cu coating under the dry friction and water-lubricated conditions are 0.377 and 0.043, respectively, and the corresponding mass wear volumes are only 2.74 and 0.81 mg, respectively.

Originality/value

The thick metal coating scheme for the mechanical seal’s faces might lend itself to the harsh working conditions of the low-viscosity liquid rocket engine.

Details

Industrial Lubrication and Tribology, vol. 71 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 May 2023

Jiafeng Lu, Xiaolin Deng, Jing Tang and Xiaoyun Chen

When processing 11Cr-3Co-3W martensitic heat-resistant steel, the traditional pouring cooling method often appears large cutting force, high cutting temperature, serious tool wear…

Abstract

Purpose

When processing 11Cr-3Co-3W martensitic heat-resistant steel, the traditional pouring cooling method often appears large cutting force, high cutting temperature, serious tool wear and poor surface quality. This paper aims to use new cooling methods for processing this problem.

Design/methodology/approach

Different performance indicators such as cutting force, tool wear and surface quality were measured and analysed under different continuous milling times. The relationship between liquid nitrogen flow and cutting force and surface roughness was analysed and measured.

Findings

The results show that with the increase of liquid nitrogen flow, the cutting force decreases, especially the Fx component, which decreases by 10%. When the liquid nitrogen flow reaches 8 L/min, the effect of increasing the liquid nitrogen flow on reducing the cutting force becomes smaller. The cutting force reduced by up to 15%, and the tool life increased up to 20% using liquid nitrogen cryogenic cooling than in cutting liquids cooling. When minimal quantities of lubricant (MQL) was added, the cutting force was reduced by 23%, and the tool life increased by 25%. When the cutting speed increases from 100 m/min to 250 m/min, the cutting force with cutting liquid cooling does not change significantly while the cutting force with liquid nitrogen cooling decreases with the cutting speed increasing. It shows that liquid nitrogen cooling is more suitable for high-speed machining. After the cutting length reaches 66 m, the surface roughness of the workpiece using liquid nitrogen cooling method larger than that of the cutting liquid cooling method. When MQL is added into liquid nitrogen, the lubrication performance is improved, and the surface roughness of the workpiece is reduced about 8%.

Originality/value

Many studies had focused on the improvement of tool life and surface quality by different cooling methods, or on the injection process and chip mechanism. However, there are few relevant studies on the variation of cooling and lubrication properties with the change of cutting length in liquid nitrogen cryogenic processing. In this research, different performance indicators such as cutting force, tool wear and surface quality were measured and analysed under different continuous milling times. The relationship between liquid nitrogen flow and cutting force and surface roughness was analysed and measured.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0053/

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 September 2019

Dantian Lin, Chengyong Wang, Lianyu Fu, Yong Ke, Yuxing He, Gexian Fang, Junxiong Yao, Xin Huang and Lijuan Zheng

Large capacity current carrier printed circuit board (PCB) imposes strict control requirements on the hole wall roughness. The key factors are chip removal, drilling temperature…

88

Abstract

Purpose

Large capacity current carrier printed circuit board (PCB) imposes strict control requirements on the hole wall roughness. The key factors are chip removal, drilling temperature and tool wear. This paper aims to find out a cryogenic drilling process to control the chip removal, chip morphology, tool wear and finally reduce the hole wall roughness.

Design/methodology/approach

The chip removal process, chip morphology, tool wear and hole wall roughness of glass fiber epoxy resin copper clad laminate (FR-4) drilling were observed and analyzed. The influence of cold air on the chip removal process, chip morphology, tool wear and hole wall roughness was also investigated. An optimization process of cold air auxiliary drilling was proposed to control the hole wall roughness of FR-4.

Findings

The results showed that the discharge time of copper foil chips with obvious characteristics can be used as the evaluation criterion for the smoothness of chip removal. The cold air can promote chip removal and reduce tool wear. In addition, the chip removal and cooling performance will be the best when using −4.7 °C cold air with the injection angle consisted with the angle of helical flute of the drill. The hole wall roughness of FR-4 could be controlled by drilling with −4.7°C cold air.

Originality/value

This paper was the first study of the effect of three kinds of cold air on PCB drilling. This provided a reference for the possibility that the cryogenic drilling methods apply to PCB drilling. A new cold air auxiliary drilling process was developed for large capacity current carrier FR-4 manufacturing.

Details

Circuit World, vol. 45 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Content available
Article
Publication date: 1 April 2005

122

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 14 June 2013

M. Stanford, P.M. Lister, K.A. Kibble, C. Morgan and T. Sihra

The purpose of this work is to investigate the performance of non‐contaminating metal cutting environments and investigate the associated tool chip interface conditions. The work…

Abstract

Purpose

The purpose of this work is to investigate the performance of non‐contaminating metal cutting environments and investigate the associated tool chip interface conditions. The work benchmarks flood coolant characteristics and considers gaseous cutting environments as possible alternatives.

Design/methodology/approach

Cutting trials were undertaken for a range of cutting environments. Flood coolant was investigated as was dry cutting, compressed air, room temperature nitrogen and liquid nitrogen environments. A range of cutting variables was measured in order to document the effect of cutting environment.

Findings

The gaseous component of the liquid nitrogen environment limited the adhesion on the tool face to a region along the flank edge of the tool, shifting rake face conditions from seizure to that of sliding. Tighter chip curl, shorter contact lengths, reduced adhesion and lower feed forces are evidence that liquid nitrogen is acting as a “liquid inert barrier” beneath the chip within the tool/chip interface.

Research limitations/implications

Only one tool work combination has been investigated. More tool work combinations will need to be investigated.

Practical implications

The work demonstrated that it is possible to use environmentally safe environments during metal cutting operations. This reduces the exposure of the environment and machine tool operatives to compounds which have been shown to have detrimental effects on the environment and human health.

Originality/value

The work has led to presenting a hypothesis that liquid nitrogen acts as a “liquid inert barrier” beneath the chip within the tool/chip interface.

Details

Industrial Lubrication and Tribology, vol. 65 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 December 2023

Nivin Vincent and Franklin Robert John

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to…

Abstract

Purpose

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to fulfil future needs; to determine the viability of particular strategies and actions performed to increase the process efficiency of electrical discharge machining; and to uphold the values of sustainability in the nonconventional manufacturing sector and to identify future works in this regard.

Design/methodology/approach

A thorough analysis of numerous experimental studies and findings is conducted. This prominent nontraditional machining process’s potential machinability and sustainability challenges are discussed, along with the current research to alleviate them. The focus is placed on modifications to the dielectric fluid, choosing affordable substitutes and treating consumable tool electrodes.

Findings

Trans-esterified vegetable oils, which are biodegradable and can be used as a substitute for conventional dielectric fluids, provide pollution-free machining with enhanced surface finish and material removal rates. Modifying the dielectric fluid with specific nanomaterials could increase the machining rate and demonstrate a decrease in machining flaws such as micropores, globules and microcracks. Tool electrodes subjected to cryogenic treatment have shown reduced tool metal consumption and downtime for the setup.

Practical implications

The findings suggested eco-friendly machining techniques and optimized control settings that reduce energy consumption, lowering operating expenses and carbon footprints. Using eco-friendly dielectrics, including vegetable oils or biodegradable dielectric fluids, might lessen the adverse effects of the electrical discharge machine operations on the environment. Adopting sustainable practices might enhance a business’s reputation with the public, shareholders and clients because sustainability is becoming increasingly significant across various industries.

Originality/value

A detailed general review of green nontraditional electrical discharge machining process is provided, from high-quality indexed journals. The findings and results contemplated in this review paper can lead the research community to collectively apply it in sustainable techniques to enhance machinability and reduce environmental effects.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 March 2014

Qiulin Niu, Xiaohu Zheng, Ming Chen and Weiwei Ming

Titanium alloy has the excellent performance and been widely utilized in aeroengine and airframe manufacture. However, improving the understanding of all aspects of titanium alloy…

Abstract

Purpose

Titanium alloy has the excellent performance and been widely utilized in aeroengine and airframe manufacture. However, improving the understanding of all aspects of titanium alloy is necessary. The purpose of this paper is to investigate the tribological properties of two typical titanium alloys against tungsten carbide under dry friction.

Design/methodology/approach

Reciprocating ball-disc friction tests were carried out at room temperature in different loading without lubricant to investigate the friction properties of TA19/WC-Co and TC18/WC-Co friction pairs. The influence of the load on the friction coefficient and friction force was analyzed. The worn surfaces of TA19 and TC18 specimens were observed by the digital microscopy and scanning electron microscopy (SEM). And the wear mechanism was discussed.

Findings

The results show that the friction coefficients decreased with the increase in the normal load. However, the reduction in the friction coefficient for the TC18 alloy was less than that for the TA19 alloy. The dynamic friction forces with time were not quite coincident with the variation trend of the friction coefficients during the sliding friction. The results observed by the SEM and EDS revealed that several grooving were the main type of frictional wear causing the surfaces of the TA19 and TC18 alloys.

Originality/value

It is shown in the paper that the tribological property of TA19 alloy was better than that of TC18 when sliding against tungsten carbide under the dry friction conditions. The main types of damage to the TA19/WC-Co friction pair were the ploughing, the delamination fatigue associate with abrasive wear and some diffusive wear. The ploughing and abrasion were the main wear mechanisms for the surface of TC18 alloy.

Details

Industrial Lubrication and Tribology, vol. 66 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 August 2021

Modupeola Dada, Patricia Popoola and Ntombi Mathe

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential…

1475

Abstract

Purpose

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential alternatives to nickel superalloys for gas turbine applications. Understandings of the laser surface modification techniques of the HEA are discussed whilst future recommendations and remedies to manufacturing challenges via laser are outlined.

Design/methodology/approach

Materials used for high-pressure gas turbine engine applications must be able to withstand severe environmentally induced degradation, mechanical, thermal loads and general extreme conditions caused by hot corrosive gases, high-temperature oxidation and stress. Over the years, Nickel-based superalloys with elevated temperature rupture and creep resistance, excellent lifetime expectancy and solution strengthening L12 and γ´ precipitate used for turbine engine applications. However, the superalloy’s density, low creep strength, poor thermal conductivity, difficulty in machining and low fatigue resistance demands the innovation of new advanced materials.

Findings

HEAs is one of the most frequently investigated advanced materials, attributed to their configurational complexity and properties reported to exceed conventional materials. Thus, owing to their characteristic feature of the high entropy effect, several other materials have emerged to become potential solutions for several functional and structural applications in the aerospace industry. In a previous study, research contributions show that defects are associated with conventional manufacturing processes of HEAs; therefore, this study investigates new advances in the laser-based manufacturing and surface modification techniques of HEA.

Research limitations/implications

The AlxCoCrCuFeNi HEA system, particularly the Al0.5CoCrCuFeNi HEA has been extensively studied, attributed to its mechanical and physical properties exceeding that of pure metals for aerospace turbine engine applications and the advances in the fabrication and surface modification processes of the alloy was outlined to show the latest developments focusing only on laser-based manufacturing processing due to its many advantages.

Originality/value

It is evident that high entropy materials are a potential innovative alternative to conventional superalloys for turbine engine applications via laser additive manufacturing.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 March 1963

E.R. BRAITHWAITE and G.W. ROWE

LONG before man learnt to make fire by the friction of wood, he experienced the burden of friction in dragging home his kill. Perhaps it is not too fanciful to suppose that the…

Abstract

LONG before man learnt to make fire by the friction of wood, he experienced the burden of friction in dragging home his kill. Perhaps it is not too fanciful to suppose that the torn sides of his beast gave the first solid lubricant. Blood and mutton fat were seriously recommended as lubricants for church bell trunnions as recently as the 17th century. Indoed we still reckon fatty acids the best of all boundary lubricants. The range of man's activities has increased enormously in the present century, and particularly in the last few decades. Men have circled the earth in space; a space ship is on its way to examine another planet; terrestrial man is boring to the bottom of the earth's crust; others have descended to the depths of the ocean, and oven established a home on the floor of the Mediterranean, Speeds have increased by factors of thousands, temperatures range from near absolute zero to thousands of degrees; and a new environment of high‐intensity nuclear radiation has been created. Still, objects must move over and along each other in these exotic conditions; and to a large extent solid lubricants can provide the answer to the frictional problems.

Details

Industrial Lubrication and Tribology, vol. 15 no. 3
Type: Research Article
ISSN: 0036-8792

1 – 10 of 75