Search results

1 – 10 of over 1000
Article
Publication date: 16 April 2024

Gabi N. Nehme and Najat G. Nehme

The purpose of variable loading conditions (392 N-785N-392N-785N) with break-in period were used to study interactions between zinc dialkyl dithiophosphate (ZDDP) 0.1 P…

Abstract

Purpose

The purpose of variable loading conditions (392 N-785N-392N-785N) with break-in period were used to study interactions between zinc dialkyl dithiophosphate (ZDDP) 0.1 P% (phosphorus) and fine-grade molybdenum disulfide (MoS2) 3%, in different mixtures of NLGI 2 lithium stearate grease. Four-ball wear tests were used to evaluate the tribological properties of different grease mixtures such as coefficient of friction and wear. ASTM 2266 as reported by earlier studies is useful, but it is not representative of real-life applications where variable loads and speeds and different break-in periods play a role and could change the results and the nature of tribofilms.

Design/methodology/approach

In this study, chemical and mechanical properties of tribofilms were examined. Moreover, design of experiment was used to examine the data and shorten experimentation time. Research described here is investigating variable loading conditions for real-life applications by using a break-in period of 2 min at the start to minimize asperities and establish a clean surface. Design expert (DOE) analyzes responses to reveal those variables that are single factor and those that are multifactor whether synergistically or antagonistically.

Findings

The results indicated that spectrum loading with break-in period showed reduction in wear when tested in greases with ZDDP/MoS2 combinations. Ramping up or down the load every 7.5 min for a rotational speed of 1,200 rpm and a total of 36,000 revolutions or 30-min time slowed the wear properties of lithium-based grease under different MoS2 and ZDDP concentrations. Experiments indicated that wear was largely dependent on the loading condition and ZDDP additives during specific break-in period at 1,200 rotational speed. It is believed that MoS2 greases perform better under spectrum loading and under constant loading when mixed with ZDDP phosphorus.

Originality/value

This research indicates that there is a synergistic interaction between ZDDP, MoS2 and variable loading especially when a break-in period is applied. The results indicated that wear was largely dependent on the specific speed used with spectrum loading as presented in the energy dispersive spectroscopy and the Auger electron spectroscopy analysis, and thus a 3% MoS2 grease with ZDDP (phosphorus: 0.1 Wt.%) are needed to improve the wear resistance and improve the friction characteristics.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0016/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 April 2024

Mandeep Singh, Deepak Bhandari and Khushdeep Goyal

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze…

Abstract

Purpose

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze casting technique.

Design/methodology/approach

The hybrid aluminium matrix nanocomposites (HAMNCs) were fabricated with varying concentrations of titanium oxide (TiO2) and yttrium oxide (Y2O3), from 2.5 to 10 Wt.% in 2.5 Wt.% increments. Dry sliding wear test variables were optimized using the Taguchi method.

Findings

The introduction of hybrid nanoparticles in the aluminium (Al) matrix was evenly distributed in contrast to the base matrix. HAMNC6 (5 Wt.% TiO2 + 5 Wt.% Y2O3) reported the maximum enhancement in mechanical properties (tensile strength, flexural strength, impact strength and density) and decrease in porosity% and elongation% among other HAMNCs. The results showed that the optimal combination of parameters to achieve the lowest wear rate was A3B3C1, or 15 N load, 1.5 m/s sliding velocity and 200 m sliding distance. The sliding distance showed the greatest effect on the dry sliding wear rate of HAMNC6 followed by applied load and sliding velocity. The fractured surfaces of the tensile sample showed traces of cracking as well as substantial craters with fine dimples and the wear worn surfaces were caused by abrasion, cracks and delamination of HAMNC6.

Originality/value

Squeeze-cast Al-reinforced hybrid (TiO2+Y2O3) nanoparticles have been investigated for their impact on mechanical properties and optimization of wear parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 March 2024

Hongkun Wang, Yongxiang Zhao, Yayun Qi and Yufeng Cao

The serious wear problem of heavy-haul freight vehicle wheels affects the safety and economy of vehicle operation. This paper aims to study wheel wear evolution law and the…

Abstract

Purpose

The serious wear problem of heavy-haul freight vehicle wheels affects the safety and economy of vehicle operation. This paper aims to study wheel wear evolution law and the influence of line parameters on wheel wear of heavy-haul freight, and provide the basis for operation and line maintenance.

Design/methodology/approach

The wheel wear test data of heavy-haul freight vehicles were analyzed. Then a heavy-haul freight vehicle dynamic model was established. The line parameters influencing wheel wear in heavy-haul freight vehicles were also analyzed by the Jendel wear model, and the effects of rail cant, rail gauge, rail profile and line ramp on wheel wear were analyzed.

Findings

A rail cant of 1:40 results in less wheel wear; an increase in the rail gauge can reduce wheel wear; and when matched with the CHN60 rail, the wear depth is relatively small. A decrease of 9.21% in wheel wear depth when matched with the CHN60 rail profile. The ramp of the heavy-haul line is necessary to consider for calculating wheel wear. When the ramp is considered, the wear depth increases by 8.47%. The larger the ramp, the greater the braking force and therefore, the greater of the wheel wear.

Originality/value

This paper first summarizes the wear characteristics of wheels in heavy-haul freight vehicles and then systematically analyzes the effect of line parameters on wheel wear. In particular, this study researched the effects of rail cant, rail gauge, rail profile and line ramp on wheel wear.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2024-0038/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 March 2024

Cong Ding, Zhizhao Qiao and Zhongyu Piao

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Abstract

Purpose

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Design/methodology/approach

The hydrodynamic pressure lubrication models of the nontextured, V-shaped, circular and square microtextures are established. The corresponding oil film pressure distributions are explored. The friction and wear experiments are conducted on a rotating device. The effects of the microstructure shapes and sizes on the wear mechanisms are investigated via the friction coefficients and surface morphologies.

Findings

In comparison, the V-shaped microtexture has the largest oil film carrying capacity and the lowest friction coefficient. The wear mechanism of the V-shaped microtexture is dominated by abrasive and adhesive wear. The V-shaped microtexture has excellent wear resistance under a side length of 300 µm, an interval of 300 µm and a depth of 20 µm.

Originality/value

This study is conductive to the design of wear-resistant surfaces for friction components.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 January 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a…

Abstract

Purpose

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a Taguchi approach. The study aims to enhance the abrasive wear resistance of these composites by introducing TiO2 filler as a potential reinforcement, thus contributing to the development of sustainable and environmentally friendly materials.

Design/methodology/approach

This study focuses on the fabrication of epoxy/bamboo composites infused with TiO2 particles within the Wt.% range of 0–8 Wt.% using hand layup techniques. The resulting composites were subjected to wear testing according to ASTM G99-05 standards. Statistical analysis of the wear results was carried out using the Taguchi design of experiments (DOE). Additionally, an analysis of variance (ANOVA) was used to determine the influential control factors impacting the specific wear rate (SWR) and coefficient of friction (COF).

Findings

The study illuminates how integrating TiO2 filler enhances abrasive wear in epoxy/bamboo composites. Statistical analysis of SWR highlights abrasive grit size (grit) as the most influential factor, followed by normal load, Wt.% of TiO2 and sliding distance. Analysis of the COF identifies normal load as the primary influential factor, followed by grit, Wt.% of TiO2 and sliding distance. The Taguchi predictive model closely aligns with experimental results, validating its reliability. The morphological study revealed significant differences between the unfilled and TiO2-filled composites. The inclusion of TiO2 improved wear resistance, as evidenced by reduced surface damage and wear debris.

Originality/value

This research paper aims to integrate TiO2 filler and bamboo fibers to create an innovative hybrid composite material. TiO2 micro and nanoparticles show promise as filler materials, contributing to improved tribological properties of epoxy composites. The utilization of Taguchi’s DOE and ANOVA for statistical analysis provides valuable guidance for academic researchers and practitioners in optimizing control variables, especially in the context of natural fiber reinforced composites.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 January 2024

Xiaoxuan Lin, Xiong Sang, Yuyan Zhu and Yichen Zhang

This paper aims to investigate the preparation of AlN and Al2O3, as well as the effect of nano-AlN and nano-Al2O3, on friction and wear properties of copper-steel clad plate…

Abstract

Purpose

This paper aims to investigate the preparation of AlN and Al2O3, as well as the effect of nano-AlN and nano-Al2O3, on friction and wear properties of copper-steel clad plate immersed in the lubricants.

Design/methodology/approach

Nano-AlN or nano-Al2O3 (0.1, 0.2, 0.3, 0.4 and 0.5 Wt.%) functional fluids were prepared. Their tribological properties were tested by an MRS-10A four-ball friction tester and a ball-on-plate configuration, and scanning electron microscope observed the worn surface of the plate.

Findings

An increase in nano-AlN and Al2O3 content enhances the extreme pressure and anti-wear performance of the lubricant. The best performance is achieved at 0.5 Wt.% of nano-AlN and 0.3 Wt.% of nano-Al2O3 with PB of 834 N and 883 N, a coefficient of friction (COF) of approximately 0.07 and 0.06, respectively. Furthermore, the inclusion of nano-AlN and nano-Al2O3 particles in the lubricant enhances its extreme pressure performance and reduces wear, leading to decreased wear spot depth. The lubricating effect of the nano-Al2O3 lubricant on the surface of the copper-steel composite plate is slightly superior to that of the nano-AlN lubricant, with a COF reaching 0.07. Both lubricants effectively fill and lubricate the holes on the surface of the copper-steel composite plate.

Originality/value

AlN and Al2O3 as water-based lubricants have excellent lubrication performance and can reduce the COF. It can provide some reference for the practical application of nano-water-based lubricants.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0255/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 December 2023

Ferhat Ceritbinmez, Yusuf Kanca, Ahmet Tuna and Erdoğan Kanca

FeNi36 (Invar-36) alloy is widely used in the fabrication of molding tools in aerospace industries but there remains a need to improve its wear and friction performance due to its…

Abstract

Purpose

FeNi36 (Invar-36) alloy is widely used in the fabrication of molding tools in aerospace industries but there remains a need to improve its wear and friction performance due to its relatively low hardness. The formation of a heat affected zone (HAZ) on the surface of Invar-36 cut by wire electric discharge machining (WEDM) is promising to enhance its tribological properties. This study aims to investigate the tribological performance of WEDM-treated Invar-36 via a ball-on-disk tribometer in dry-sliding conditions.

Design/methodology/approach

The untreated and WEDM-treated Invar-36 surfaces were reciprocated against an alumina ball at a sliding velocity of 40 mm/s, a stroke length of 10 mm and a sliding duration of 125 min under loads of 5, 10 and 20 N. The worn surfaces were characterized using a 2D profilometry and a scanning electron microscope equipped with energy-dispersive spectroscopy.

Findings

The results showed that the WEDM-treated surface had a superior friction coefficient and wear resistance in comparison to the untreated surface, due to the grown HAZ. There was found to be a 9.3%–11.4% decrease in the friction coefficient and a 47%–57% reduction in the wear volume after the WEDM treatment. Both the untreated and WEDM-treated Invar-36 surfaces found abrasion and plastic deformation as the dominant wear mechanisms.

Originality/value

Previous works have not focused on the tribological performance of the WEDM-treated Invar-36 extensively used for molding tools in aerospace industries. Our findings provide compelling evidence that the WEDM treatment improved the wear and friction performance of Invar-36 alloy because of the grown HAZ.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 January 2024

Jian Wei, YuXi Xue, Jing Tian and Fei Guo

This paper aims to investigate the effect of frictional heat on the wear of high-speed rotary lip seals in engines.

Abstract

Purpose

This paper aims to investigate the effect of frictional heat on the wear of high-speed rotary lip seals in engines.

Design/methodology/approach

In this research paper, the authors focus on the high-speed rotating lip seal of aircraft engines. Using the hybrid lubrication theory, a thermal-fluid-solid coupled numerical simulation model is established to investigate the influence of parameters such as contact pressure distribution, temperature rise and leakage rate on the sealing performance under different operating conditions. By incorporating the Rhee wear theory and combining simulation results with experimental data, a method for predicting the wear of the rotating seal lip profile is proposed. Experimental validation is conducted using a high-speed rotating test rig.

Findings

The results indicate that as the speed increases, the rise in frictional heat leads to a decrease in the sealing performance of the lip seal contact region. The experimental results show a similar trend to the numerical simulation results, and considering the effect of frictional heat, the predicted wear of the lip seal profile aligns more closely with the actual wear curve. This highlights the importance of considering the influence of frictional heat in the analysis of rotating seal mechanisms.

Originality/value

This study provides a reference for the prediction of wear profiles of engine high-speed rotary lip seals.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2024

Zhicai Du, Qiang He, Hengcheng Wan, Lei Zhang, Zehua Xu, Yuan Xu and Guotao Li

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or…

Abstract

Purpose

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or nano-CeO2) and composite additives (nano-TiO2–CeO2) in lithium complex greases and to analyze the mechanism of their influence using a variety of characterization tools.

Design/methodology/approach

The morphology and microstructure of the nanoparticles were characterized by scanning electron microscopy and an X-ray diffractometer. The tribological properties of different nanoparticles, as well as compounded nanoparticles as greases, were evaluated. Average friction coefficients and wear diameters were analyzed. Scanning electron microscopy and three-dimensional topography were used to analyze the surface topography of worn steel balls. The elements present on the worn steel balls’ surface were analyzed using energy-dispersive spectroscopy and X-ray photoelectron spectroscopy.

Findings

The results showed that the coefficient of friction (COF) of grease with all three nanoparticles added was low. The grease-containing composite nanoparticles exhibited a lower COF and superior anti-wear properties. The sample displayed its optimal tribological performance when the ratio of TiO2 to CeO2 was 6:4, resulting in a 30.5% reduction in the COF and a 29.2% decrease in wear spot diameter compared to the original grease. Additionally, the roughness of the worn spot surface and the maximum depth of the wear mark were significantly reduced.

Originality/value

The main innovation of this study is the first mixing of nano-TiO2 and nano-CeO2 with different sizes and properties as compound lithium grease additives to significantly enhance the anti-wear and friction reduction properties of this grease. The results of friction experiments with a single additive are used as a basis to explore the synergistic lubrication mechanism of the compounded nanoparticles. This innovative approach provides a new reference and direction for future research and development of grease additives.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0291/

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 October 2023

Zonglin Lei, Zunge Li and Yangyi Xiao

This study aims to investigate the surface modification on 20CrMnTi gear steel individually treated by diamond-like carbon films and nitride coatings.

Abstract

Purpose

This study aims to investigate the surface modification on 20CrMnTi gear steel individually treated by diamond-like carbon films and nitride coatings.

Design/methodology/approach

For this purpose, the mechanical properties of a-C:H, ta-C and AlCrSiN coatings are characterized by nano-indentation and scratch tests. The friction and wear behaviors of these three coatings are evaluated by ball-on-disc tribological experiments under dry contact conditions.

Findings

The results show that the a-C:H coating has the highest coating-substrate adhesion strength (495 mN) and the smoothest surface (Ra is about 0.045 µm) compared with the other two coatings. The AlCrSiN coating shows the highest mean coefficient of friction (COF), whereas the ta-C coating exhibits the lowest one (steady at about 0.16). The carbon-based coatings possess excellent self-lubricating properties compared with nitride ceramic ones, which effectively reduce the COF by about 64%. The major failure mode of carbon-based coatings in dry contact is slight abrasive wear. The damage of AlCrSiN coating is mainly adhesive wear and abrasive wear.

Originality/value

It is suggested that the carbon-based film can effectively improve the friction-reducing and wear resistance performance of the gear steel surface, which has a promising application prospect in the mechanical transmission field.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0129/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000