Search results

1 – 10 of 684
Article
Publication date: 16 April 2024

Gabi N. Nehme and Najat G. Nehme

The purpose of variable loading conditions (392 N-785N-392N-785N) with break-in period were used to study interactions between zinc dialkyl dithiophosphate (ZDDP) 0.1 P…

Abstract

Purpose

The purpose of variable loading conditions (392 N-785N-392N-785N) with break-in period were used to study interactions between zinc dialkyl dithiophosphate (ZDDP) 0.1 P% (phosphorus) and fine-grade molybdenum disulfide (MoS2) 3%, in different mixtures of NLGI 2 lithium stearate grease. Four-ball wear tests were used to evaluate the tribological properties of different grease mixtures such as coefficient of friction and wear. ASTM 2266 as reported by earlier studies is useful, but it is not representative of real-life applications where variable loads and speeds and different break-in periods play a role and could change the results and the nature of tribofilms.

Design/methodology/approach

In this study, chemical and mechanical properties of tribofilms were examined. Moreover, design of experiment was used to examine the data and shorten experimentation time. Research described here is investigating variable loading conditions for real-life applications by using a break-in period of 2 min at the start to minimize asperities and establish a clean surface. Design expert (DOE) analyzes responses to reveal those variables that are single factor and those that are multifactor whether synergistically or antagonistically.

Findings

The results indicated that spectrum loading with break-in period showed reduction in wear when tested in greases with ZDDP/MoS2 combinations. Ramping up or down the load every 7.5 min for a rotational speed of 1,200 rpm and a total of 36,000 revolutions or 30-min time slowed the wear properties of lithium-based grease under different MoS2 and ZDDP concentrations. Experiments indicated that wear was largely dependent on the loading condition and ZDDP additives during specific break-in period at 1,200 rotational speed. It is believed that MoS2 greases perform better under spectrum loading and under constant loading when mixed with ZDDP phosphorus.

Originality/value

This research indicates that there is a synergistic interaction between ZDDP, MoS2 and variable loading especially when a break-in period is applied. The results indicated that wear was largely dependent on the specific speed used with spectrum loading as presented in the energy dispersive spectroscopy and the Auger electron spectroscopy analysis, and thus a 3% MoS2 grease with ZDDP (phosphorus: 0.1 Wt.%) are needed to improve the wear resistance and improve the friction characteristics.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0016/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 April 2024

Mandeep Singh, Deepak Bhandari and Khushdeep Goyal

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze…

Abstract

Purpose

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze casting technique.

Design/methodology/approach

The hybrid aluminium matrix nanocomposites (HAMNCs) were fabricated with varying concentrations of titanium oxide (TiO2) and yttrium oxide (Y2O3), from 2.5 to 10 Wt.% in 2.5 Wt.% increments. Dry sliding wear test variables were optimized using the Taguchi method.

Findings

The introduction of hybrid nanoparticles in the aluminium (Al) matrix was evenly distributed in contrast to the base matrix. HAMNC6 (5 Wt.% TiO2 + 5 Wt.% Y2O3) reported the maximum enhancement in mechanical properties (tensile strength, flexural strength, impact strength and density) and decrease in porosity% and elongation% among other HAMNCs. The results showed that the optimal combination of parameters to achieve the lowest wear rate was A3B3C1, or 15 N load, 1.5 m/s sliding velocity and 200 m sliding distance. The sliding distance showed the greatest effect on the dry sliding wear rate of HAMNC6 followed by applied load and sliding velocity. The fractured surfaces of the tensile sample showed traces of cracking as well as substantial craters with fine dimples and the wear worn surfaces were caused by abrasion, cracks and delamination of HAMNC6.

Originality/value

Squeeze-cast Al-reinforced hybrid (TiO2+Y2O3) nanoparticles have been investigated for their impact on mechanical properties and optimization of wear parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 January 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a…

Abstract

Purpose

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a Taguchi approach. The study aims to enhance the abrasive wear resistance of these composites by introducing TiO2 filler as a potential reinforcement, thus contributing to the development of sustainable and environmentally friendly materials.

Design/methodology/approach

This study focuses on the fabrication of epoxy/bamboo composites infused with TiO2 particles within the Wt.% range of 0–8 Wt.% using hand layup techniques. The resulting composites were subjected to wear testing according to ASTM G99-05 standards. Statistical analysis of the wear results was carried out using the Taguchi design of experiments (DOE). Additionally, an analysis of variance (ANOVA) was used to determine the influential control factors impacting the specific wear rate (SWR) and coefficient of friction (COF).

Findings

The study illuminates how integrating TiO2 filler enhances abrasive wear in epoxy/bamboo composites. Statistical analysis of SWR highlights abrasive grit size (grit) as the most influential factor, followed by normal load, Wt.% of TiO2 and sliding distance. Analysis of the COF identifies normal load as the primary influential factor, followed by grit, Wt.% of TiO2 and sliding distance. The Taguchi predictive model closely aligns with experimental results, validating its reliability. The morphological study revealed significant differences between the unfilled and TiO2-filled composites. The inclusion of TiO2 improved wear resistance, as evidenced by reduced surface damage and wear debris.

Originality/value

This research paper aims to integrate TiO2 filler and bamboo fibers to create an innovative hybrid composite material. TiO2 micro and nanoparticles show promise as filler materials, contributing to improved tribological properties of epoxy composites. The utilization of Taguchi’s DOE and ANOVA for statistical analysis provides valuable guidance for academic researchers and practitioners in optimizing control variables, especially in the context of natural fiber reinforced composites.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 April 2024

Ziyan Lu, Feng Qiu, Hui Song and Xianguo Hu

This paper aims to solve the problems molybdenum disulfide (MoS2) nanosheets suffer from inadequate dispersion stability and form a weak lubricating film on the friction surface…

Abstract

Purpose

This paper aims to solve the problems molybdenum disulfide (MoS2) nanosheets suffer from inadequate dispersion stability and form a weak lubricating film on the friction surface, which severely limits their application as lubricant additives.

Design/methodology/approach

MoS2/C60 nanocomposites were prepared by synthesizing molybdenum disulfide (MoS2) nanosheets on the surface of hydrochloric acid-activated fullerenes (C60) by in situ hydrothermal method. The composition, structure and morphology of MoS2/C60 nanocomposites were characterized. Through the high-frequency reciprocating tribology test, its potential as a lubricant additive was evaluated.

Findings

MoS2/C60 nanocomposites that were prepared showed good dispersion in dioctyl sebacate (DOS). When 0.5 Wt.% MoS2/C60 was added, the friction reduction performance and wear resistance improved by 54.5% and 62.7%, respectively.

Originality/value

MoS2/C60 composite nanoparticles were prepared by in-situ formation of MoS2 nanosheets on the surface of C60 activated by HCl through hydrothermal method and were used as potential lubricating oil additives.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0321/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 April 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf D'Souza and Thirumaleshwara Bhat

This study explores how titanium oxide (TiO2) filler influences the specific wear rate (SWR) in flax fiber-reinforced epoxy composites (FFRCs) through a Taguchi approach. It aims…

Abstract

Purpose

This study explores how titanium oxide (TiO2) filler influences the specific wear rate (SWR) in flax fiber-reinforced epoxy composites (FFRCs) through a Taguchi approach. It aims to boost abrasive wear resistance by incorporating TiO2 filler, promoting sustainable and eco-friendly materials.

Design/methodology/approach

This study fabricates epoxy/flax composites with TiO2 particles (0–8 wt%) using hand layup. Composites were tested for wear following American Society for Testing and Materials (ASTM) G99-05. Statistical analysis used Taguchi design of experiments (DOE), with ANOVA identifying key factors affecting SWR in abrasive sliding conditions.

Findings

The study illuminates how integrating TiO2 filler particles into epoxy/flax composites enhances abrasive wear properties. Statistical analysis of SWR highlights abrasive grit size (grit) as the most influential factor, followed by normal load, wt% of TiO2 and sliding distance. Grit size has the highest effect at 43.78%, and wt% TiO2 filler contributes 15.61% to SWR according to ANOVA. Notably, the Taguchi predictive model closely aligns with experimental results, validating its reliability.

Originality/value

This paper integrates TiO2 filler and flax fibers to form a novel hybrid composite with enhanced tribological properties in epoxy composites. The use of Taguchi DOE and ANOVA offers valuable insights for optimizing control variables, particularly in natural fiber-reinforced composites (NFRCs).

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 April 2023

Ronnarit Khuengpukheiw, Anurat Wisitsoraat and Charnnarong Saikaew

This paper aims to compare the wear behavior, surface roughness, friction coefficient and volume loss of high-velocity oxy-fuel (HVOF) sprayed WC–Co and WC–Cr3C2–Ni coatings on…

Abstract

Purpose

This paper aims to compare the wear behavior, surface roughness, friction coefficient and volume loss of high-velocity oxy-fuel (HVOF) sprayed WC–Co and WC–Cr3C2–Ni coatings on AISI 1095 steel with spraying times of 10 and 15 s.

Design/methodology/approach

In this study, the pin-on-disc testing technique was used to evaluate the wear characteristics at a speed of 0.24 m/s, load of 40 N and test time of 60 min under dry conditions at room temperature. The wear characteristics were examined and analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The surface roughness of a coated surface was measured, and microhardness measurements were performed on the cross-sectioned and polished surfaces of the coating.

Findings

Spraying time and powder material affected the hardness of HVOF coatings due to differences in the porosity of the coated layers. The average hardness of the WC–Cr3C2–Ni coating with a spaying time of 15 s was approximately 14% higher than that of the WC–Cr3C2–Ni coating with a spraying time of 10 s. Under an applied load of 40 N, the WC–Co coating with a spraying time of 15 s had the lowest variation in the friction coefficient compared with the other coatings. The WC–Co coating with a spraying time of 10 s had the lowest average and variation in volume loss compared to the other coatings. The WC–Cr3C2–Ni coating with a spraying time of 10 s exhibited the highest average volume loss. The wear features changed slightly with the spraying time owing to variations in the hardness and friction coefficient.

Originality/value

This study investigated tribological performance of WC–Co; WC-Cr3C2-Ni coatings with spraying times of 10 and 15 s using pin-on-disc tribometer by rotating the relatively soft pin (C45 steel) against hard coated substrate (disc).

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 June 2023

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles D’Souza and Thirumaleshwara Bhat

This paper aims to report the effect of titanium oxide (TiO2) particles on the specific wear rate (SWR) of alkaline treated bamboo and flax fiber-reinforced composites (FRCs…

Abstract

Purpose

This paper aims to report the effect of titanium oxide (TiO2) particles on the specific wear rate (SWR) of alkaline treated bamboo and flax fiber-reinforced composites (FRCs) under dry sliding condition by using a robust statistical method.

Design/methodology/approach

In this research, the epoxy/bamboo and epoxy/flax composites filled with 0–8 Wt.% TiO2 particles have been fabricated using simple hand layup techniques, and wear testing of the composite was done in accordance with the ASTM G99-05 standard. The Taguchi design of experiments (DOE) was used to conduct a statistical analysis of experimental wear results. An analysis of variance (ANOVA) was conducted to identify significant control factors affecting SWR under dry sliding conditions. Taguchi prediction model is also developed to verify the correlation between the test parameters and performance output.

Findings

The research study reveals that TiO2 filler particles in the epoxy/bamboo and epoxy/flax composite will improve the tribological properties of the developed composites. Statistical analysis of SWR concludes that normal load is the most influencing factor, followed by sliding distance, Wt.% TiO2 filler and sliding velocity. ANOVA concludes that normal load has the maximum effect of 31.92% and 35.77% and Wt.% of TiO2 filler has the effect of 17.33% and 16.98%, respectively, on the SWR of bamboo and flax FRCs. A fairly good agreement between the Taguchi predictive model and experimental results is obtained.

Originality/value

This research paper attempts to include both TiO2 filler and bamboo/flax fibers to develop a novel hybrid composite material. TiO2 micro and nanoparticles are promising filler materials, it helps to enhance the mechanical and tribological properties of the epoxy composites. Taguchi DOE and ANOVA used for statistical analysis serve as guidelines for academicians and practitioners on how to best optimize the control variable with particular reference to natural FRCs.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 March 2024

Audu Ibrahim Ali, Mohd Kameil Abdul Hamid, Mohd Azman Bin Abas, Mohd Farid Muhamad Said, Anthony Chukwunonso Opia, Izhari Izmi Bin Mazali and Zul Hilmi Bin Che Daud

Due to the environmental issues caused by petroleum lubricants used in lubrication, the concept of creating various bio-lubricants requires research globally. Thus, this study…

Abstract

Purpose

Due to the environmental issues caused by petroleum lubricants used in lubrication, the concept of creating various bio-lubricants requires research globally. Thus, this study aims to develop, characterize and test the base ficus carica oil (fig oil) for its ethylene vinyl acetate copolymer (EVA) and sodium dodecylbenzene sulfonate (SDBS) content.

Design/methodology/approach

The sample characterization was done using the Fourier transmission infrared spectrum, whereas the morphologies of the EVA, SDBS particles and lubricated surfaces were carried out under scanning electron microscope equipment. To ensure the homogeneity of the solution (base oil and additives), the formulations were subjected to the sonication process. The anti-friction and anti-wear properties of EVA and SDBS particles as lubricant additives were investigated using a ball on a flat high-frequency reciprocating rig tribo-tester.

Findings

According to the findings, the base oil’s anti-friction and anti-wear capabilities can be greatly enhanced by the additions. revealed that the best results were obtained when 1.2% EVA + 2% SDBS was applied for the examination of wear (597.8 µm) and friction coefficient (0.106). Commercial references were used, nevertheless, and the results were excellent. This is because the particles in the contact area during lubrication have strong solubility and quickly penetrate the contact zone. The lubricating mechanisms were explained by a tribological model of the EVA + SDBS and SDBS particles.

Research limitations/implications

The coefficient of friction and wear reduction caused by the use of the additives will certainly enhance system performance and protect the machine components from excessive wear that could cause damage or failure.

Originality/value

The originality and uniqueness of this work are officially affirmed by the authors. The authors’ autonomous and original contribution to the development of sustainable lubrication is represented in this work. To the best of the authors’ knowledge, no other study has been published or made publicly available that duplicates the precise scope and goals of our research, and this conclusion is based on a thorough literature assessment.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 21 April 2022

Warot Moungsouy, Thanawat Tawanbunjerd, Nutcha Liamsomboon and Worapan Kusakunniran

This paper proposes a solution for recognizing human faces under mask-wearing. The lower part of human face is occluded and could not be used in the learning process of face…

2629

Abstract

Purpose

This paper proposes a solution for recognizing human faces under mask-wearing. The lower part of human face is occluded and could not be used in the learning process of face recognition. So, the proposed solution is developed to recognize human faces on any available facial components which could be varied depending on wearing or not wearing a mask.

Design/methodology/approach

The proposed solution is developed based on the FaceNet framework, aiming to modify the existing facial recognition model to improve the performance of both scenarios of mask-wearing and without mask-wearing. Then, simulated masked-face images are computed on top of the original face images, to be used in the learning process of face recognition. In addition, feature heatmaps are also drawn out to visualize majority of parts of facial images that are significant in recognizing faces under mask-wearing.

Findings

The proposed method is validated using several scenarios of experiments. The result shows an outstanding accuracy of 99.2% on a scenario of mask-wearing faces. The feature heatmaps also show that non-occluded components including eyes and nose become more significant for recognizing human faces, when compared with the lower part of human faces which could be occluded under masks.

Originality/value

The convolutional neural network based solution is tuned up for recognizing human faces under a scenario of mask-wearing. The simulated masks on original face images are augmented for training the face recognition model. The heatmaps are then computed to prove that features generated from the top half of face images are correctly chosen for the face recognition.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 14 September 2023

Petek Tosun and Gökhan Tosun

This study examines the impact of servitization in the form of repair and maintenance services on consumers' quality perceptions, purchase intentions and recommendation intentions…

Abstract

Purpose

This study examines the impact of servitization in the form of repair and maintenance services on consumers' quality perceptions, purchase intentions and recommendation intentions while considering consumer frugality as a moderator in the retail ready-to-wear sector.

Design/methodology/approach

A quantitative approach based on consumer research was pursued. Study 1 tested the research model using a fictitious ready-to-wear brand within an experimental design. To increase the generalizability of results, Study 2 retested the model with a well-known ready-to-wear brand. For both studies, regression, mediation and moderation analyses were conducted in SPSS.

Findings

Both studies showed that servitization positively influences perceived quality. Servitization positively affects purchase intentions and recommendation intentions indirectly via the mediating role of perceived quality. Frugality moderates the relationship between servitization and perceived quality for the fictitious brand (Study 1), whereas it is not significant for a well-known ready-to-wear brand (Study 2). Servitization positively influences perceived quality regardless of consumers' frugality levels for a stronger brand.

Originality/value

This study suggests and tests an original conceptual model that relies on signaling theory. It is among the first studies to examine the impact of servitization on retail fashion consumers' quality perceptions and consequent purchase and recommendation intentions. This study also contributes to the literature by presenting empirical findings based on consumer research on servitization while considering frugality as a moderator.

Practical implications

Bundling products with additional services can contribute to quality perceptions and consequently to purchase and recommendation intentions for ready-to-wear brands.

Details

Journal of Fashion Marketing and Management: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1361-2026

Keywords

1 – 10 of 684