Search results

1 – 10 of 53
Article
Publication date: 2 October 2017

Xuzhao He, Jialing Le and Si Qin

Waverider has high lift to drag ratio and will be an idea aerodynamic configuration for hypersonic vehicles. But a structure permitting aerodynamic like waverider is still…

Abstract

Purpose

Waverider has high lift to drag ratio and will be an idea aerodynamic configuration for hypersonic vehicles. But a structure permitting aerodynamic like waverider is still difficult to generate under airframe’s geometric constrains using traditional waverider design methods. And furthermore, traditional waverider’s aerodynamic compression ability cannot be easily adjusted to satisfy the inlet entrance requirements for hypersonic air-breathing vehicles. The purpose of this paper is to present a new method named osculating general curved cone (OCC) method aimed to improve the shortcomings of traditional waveriders.

Design/methodology/approach

A basic curved cone is, first, designed by the method of characteristics. Then the waverider’s inlet captured curve and front captured tube are defined in the waverider’s exit plane. Osculating planes are generated along the inlet captured curve and the designed curved cone is transformed to the osculating planes. Streamlines are traced in the transformed curved cone flow field. Combining all streamlines which have been obtained, OCC waverider’s compression surface is generated. Waverider’s upper surface uses the free stream surface.

Findings

It is found that OCC waverider has good volumetric characteristics and good flow compression abilities compared with the traditional osculating cone (OC) waverider. The volume of OCC waverider is 25 per cent larger than OC waverider at the same design condition. Furthermore, OCC waverider can compress incoming flow to required flow conditions with high total pressure recovery in the waverider’s exit plane. The flow uniformity in the waverider exit plane is quite well.

Practical implications

The analyzed results show that the OCC waverider can be a practical high performance airframe/forebody for hypersonic vehicles. Furthermore, this novel waverider design method can be used to design a structure permitting aerodynamic like waverider for a practical hypersonic vehicle.

Originality/value

The paper puts forward a novel waverider design method which can improve the waverider’s volumetric characteristics and compression abilities compared with the traditional waverider design methods. This novel design approach can extend the waverider’s applications for designing hypersonic vehicles.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 January 2015

S. Tauqeer ul Islam Rizvi, He Linshu and Xu Dajun

The purpose of the paper is to study the variation of optimal burnout angle at the end of the ascent phase and the optimal control deflection during the glide phase, that would…

Abstract

Purpose

The purpose of the paper is to study the variation of optimal burnout angle at the end of the ascent phase and the optimal control deflection during the glide phase, that would maximize the downrange performance of a hypersonic boost-glide waverider, with variation in heat rate and integrated heat load limit.

Design/methodology/approach

The approach used is to model the boost phase so as to optimize the burnout conditions. The nonlinear, multiphase, constraint optimal control problem is solved using an hp-adaptive pseudospectral method.

Findings

The constraint heat load results for the waverider configuration reveal that the integrated heat load can be reduced by more than half with only 10 per cent penalty in the overall downrange of the hypersonic boost-glide vehicle, within a burnout speed range of 3.7 to 4.3 km/s. The angle-of-attack trim control requirements increase with stringent heat rate and integrated heat load bounds. The normal acceleration remains within limits.

Practical implications

The trajectory results imply lower thermal protection system weight because of reduced heat load trajectory profile and therefore lower thermal protection system cost.

Originality/value

The research provides further study on the trajectory design to the hypersonic boost-glide vehicles for medium range application.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 29 August 2019

Song Gao, Jory Seguin, Wagdi G. Habashi, Dario Isola and Guido Baruzzi

This work aims to describe the physical and numerical modeling of a CFD solver for hypersonic flows in thermo-chemical non-equilibrium. This paper is the second of a two-part…

231

Abstract

Purpose

This work aims to describe the physical and numerical modeling of a CFD solver for hypersonic flows in thermo-chemical non-equilibrium. This paper is the second of a two-part series that concerns the application of the solver introduced in Part I to adaptive unstructured meshes.

Design/methodology/approach

The governing equations are discretized with an edge-based stabilized finite element method (FEM). Chemical non-equilibrium is simulated using a laminar finite-rate kinetics, while a two-temperature model is used to account for thermodynamic non-equilibrium. The equations for total quantities, species and vibrational-electronic energy conservation are loosely coupled to provide flexibility and ease of implementation. To accurately perform simulations on unstructured meshes, the non-equilibrium flow solver is coupled with an edge-based anisotropic mesh optimizer driven by the solution Hessian to carry out mesh refinement, coarsening, edge swapping and node movement.

Findings

The paper shows, through comparisons with experimental and other numerical results, how FEM + anisotropic mesh optimization are the natural choice to accurately simulate hypersonic non-equilibrium flows on unstructured meshes. Three-dimensional test cases demonstrate how, for high-speed flows, shocks resolution, and not necessarily boundary layers resolution, is the main driver of solution accuracy at walls. Equally distributing the error among all elements in a suitably defined Riemannian space yields highly anisotropic grids that feature well-resolved shock waves. The resulting high level of accuracy in the computation of the enthalpy jump translates into accurate wall heat flux predictions. At the opposite end, in all cases examined, high-quality but isotropic unstructured meshes gave very poor solutions with severely inadequate heat flux distributions not even featuring expected symmetries. The paper unequivocally demonstrates that unstructured anisotropically adapted meshes are the best, and may be the only, way for accurate and cost-effective hypersonic flow solutions.

Originality/value

Although many hypersonic flow solvers are developed for unstructured meshes, few numerical simulations on unstructured meshes are presented in the literature. This work demonstrates that the proposed approach can be used successfully for hypersonic flows on unstructured meshes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Expert briefing
Publication date: 10 September 2019

Hypersonic missiles and their implications.

Details

DOI: 10.1108/OXAN-DB246321

ISSN: 2633-304X

Keywords

Geographic
Topical
Content available
Article
Publication date: 1 February 2003

62

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 50 no. 1
Type: Research Article
ISSN: 0003-5599

Content available
Article
Publication date: 1 April 2000

53

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 47 no. 2
Type: Research Article
ISSN: 0003-5599

Content available
Article
Publication date: 1 June 2002

71

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 49 no. 3
Type: Research Article
ISSN: 0003-5599

Content available
Article
Publication date: 1 December 2002

62

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 49 no. 6
Type: Research Article
ISSN: 0003-5599

Content available
Article
Publication date: 1 August 2003

54

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 50 no. 4
Type: Research Article
ISSN: 0003-5599

Content available
Article
Publication date: 1 February 2004

42

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 51 no. 1
Type: Research Article
ISSN: 0003-5599

1 – 10 of 53