Search results

1 – 10 of over 15000
Article
Publication date: 7 April 2015

Changfu Liu, Zeping Wang, Zhengde Dai and Longwei Chen

The purpose of this paper is to construct analytical solutions of the (2+1)-dimensional nonlinear Schrodinger equations, and the existence of rogue waves and their localized…

Abstract

Purpose

The purpose of this paper is to construct analytical solutions of the (2+1)-dimensional nonlinear Schrodinger equations, and the existence of rogue waves and their localized structures are studied.

Design/methodology/approach

Function transformation and variable separation method are applied to the (2+1)-dimensional nonlinear Schrodinger equations.

Findings

A series of analytical solutions including rogue wave solutions for the (2+1)-dimensional nonlinear Schrodinger equations are constructed. Localized structures of rogue waves confirm the presence of large amplitude wave wall.

Research limitations/implications

The localized structures of rogue waves are displayed by analytical solutions and figures. The authors just find some of them and others still to be found.

Originality/value

These results may help to investigate the localized structures and the behavior of rogue waves for nonlinear evolution equations. Applying two different function transformations and variable separation functions to two different states of the equations, respectively, to construct the solutions of the (2+1)-dimensional nonlinear Schrodinger equations. Rogue wave solutions are enumerated and their figures are partly displayed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 October 2015

Rajneesh Kakar

The purpose of this paper is to deal with the propagation of Love waves in inhomogeneous viscoelastic layer overlying a gravitational half-space. It has been observed velocity of…

Abstract

Purpose

The purpose of this paper is to deal with the propagation of Love waves in inhomogeneous viscoelastic layer overlying a gravitational half-space. It has been observed velocity of Love waves depends on viscosity, gravity, inhomogeneity and initial stress of the layer.

Design/methodology/approach

The dispersion relation for the Love wave in closed form is obtained with Whitaker’s function.

Findings

The effect of various non-dimensional inhomogeneity factors, gravity factor and internal friction on the non-dimensional Love wave velocity has been shown graphically. The authors observed that the dispersion curve of Love wave increases as the inhomogeneity factor increases. It is seen that increment in gravity, inhomogeneity and internal friction decreases the damping phase velocity of Love waves but it is more prominent in case of internal friction.

Originality/value

Surface plot of Love wave reveals that the velocity ratio increases with the increase of non-dimensional phase velocity and non-dimensional wave number. The above results may attract seismologists and geologists.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 November 2018

Jin-Jin Mao, Shou-Fu Tian and Tian-Tian Zhang

The purpose of this paper is to find the exact solutions of a (3 + 1)-dimensional non-integrable Korteweg-de Vries type (KdV-type) equation, which can be used to describe the…

Abstract

Purpose

The purpose of this paper is to find the exact solutions of a (3 + 1)-dimensional non-integrable Korteweg-de Vries type (KdV-type) equation, which can be used to describe the stability of soliton in a nonlinear media with weak dispersion.

Design/methodology/approach

The authors apply the extended Bell polynomial approach, Hirota’s bilinear method and the homoclinic test technique to find the rogue waves, homoclinic breather waves and soliton waves of the (3 + 1)-dimensional non-integrable KdV-type equation. The used approach formally derives the essential conditions for these solutions to exist.

Findings

The results show that the equation exists rogue waves, homoclinic breather waves and soliton waves. To better understand the dynamic behavior of these solutions, the authors analyze the propagation and interaction properties of the these solutions.

Originality/value

These results may help to investigate the local structure and the interaction of waves in KdV-type equations. It is hoped that the results can help enrich the dynamic behavior of such equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 27 November 2023

J.I. Ramos and Carmen María García López

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the…

212

Abstract

Purpose

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the propagation of small-amplitude waves in shallow water, as a function of the relaxation time, linear and nonlinear drift, power of the nonlinear advection flux, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of three types of initial conditions.

Design/methodology/approach

An implicit, first-order accurate in time, finite difference method valid for semipositive relaxation times has been used to solve the equation in a truncated domain for three different initial conditions, a first-order time derivative initially equal to zero and several constant wave speeds.

Findings

The numerical experiments show a very rapid transient from the initial conditions to the formation of a leading propagating wave, whose duration depends strongly on the shape, amplitude and width of the initial data as well as on the coefficients of the bidirectional equation. The blowup times for the triangular conditions have been found to be larger than those for the Gaussian ones, and the latter are larger than those for rectangular conditions, thus indicating that the blowup time decreases as the smoothness of the initial conditions decreases. The blowup time has also been found to decrease as the relaxation time, degree of nonlinearity, linear drift coefficient and amplitude of the initial conditions are increased, and as the width of the initial condition is decreased, but it increases as the viscosity coefficient is increased. No blowup has been observed for relaxation times smaller than one-hundredth, viscosity coefficients larger than ten-thousandths, quadratic and cubic nonlinearities, and initial Gaussian, triangular and rectangular conditions of unity amplitude.

Originality/value

The blowup of a one-dimensional, bidirectional equation that is a model for the propagation of waves in shallow water, longitudinal displacement in homogeneous viscoelastic bars, nerve conduction, nonlinear acoustics and heat transfer in very small devices and/or at very high transfer rates has been determined numerically as a function of the linear and nonlinear drift coefficients, power of the nonlinear drift, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of the initial conditions for nonzero relaxation times.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2023

Na Liu

This paper aims to study the breather, lump-kink and interaction solutions of a (3 + 1)-dimensional generalized shallow water waves (GSWW) equation, which describes water waves

41

Abstract

Purpose

This paper aims to study the breather, lump-kink and interaction solutions of a (3 + 1)-dimensional generalized shallow water waves (GSWW) equation, which describes water waves propagating in the ocean or is used for simulating weather.

Design/methodology/approach

Hirota bilinear form and the direct method are used to construct breather and lump-kink solutions of the GSWW equation. The “rational-cosh-cos-type” test function is applied to obtain three kinds of interaction solutions.

Findings

The fusion and fission of the interaction solutions between a lump wave and a 1-kink soliton of the GSWW equation are studied. The dynamics of three kinds of interaction solutions between lump, kink and periodic waves are discussed graphically.

Originality/value

This paper studies the breather, lump-kink and interaction solutions of the GSWW equation by using various approaches and provides some phenomena that have not been studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 April 2020

J.I. Ramos and Carmen María García López

The purpose of this paper is to determine both analytically and numerically the solution to a new one-dimensional equation for the propagation of small-amplitude waves in shallow…

Abstract

Purpose

The purpose of this paper is to determine both analytically and numerically the solution to a new one-dimensional equation for the propagation of small-amplitude waves in shallow waters that accounts for linear and nonlinear drift, diffusive attenuation, viscosity and dispersion, its dependence on the initial conditions, and its linear stability.

Design/methodology/approach

An implicit, finite difference method valid for both parabolic and second-order hyperbolic equations has been used to solve the equation in a truncated domain for five different initial conditions, a nil initial first-order time derivative and relaxation times linearly proportional to the viscosity coefficient.

Findings

A fast transition that depends on the coefficient of the linear drift, the diffusive attenuation and the power of the nonlinear drift are found for initial conditions corresponding to the exact solution of the generalized regularized long-wave equation. For initial Gaussian, rectangular and triangular conditions, the wave’s amplitude and speed increase as both the amplitude and the width of these conditions increase and decrease, respectively; wide initial conditions evolve into a narrow leading traveling wave of the pulse type and a train of slower oscillatory secondary ones. For the same initial mass and amplitude, rectangular initial conditions result in larger amplitude and velocity waves of the pulse type than Gaussian and triangular ones. The wave’s kinetic, potential and stretching energies undergo large changes in an initial layer whose thickness is on the order of the diffusive attenuation coefficient.

Originality/value

A new, one-dimensional equation for the propagation of small-amplitude waves in shallow waters is proposed and studied analytically and numerically. The equation may also be used to study the displacement of porous media subject to seismic effects, the dispersion of sound in tunnels, the attenuation of sound because of viscosity and/or heat and mass diffusion, the dynamics of second-order, viscoelastic fluids, etc., by appropriate choices of the parameters that appear in it.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 November 2015

Rajneesh Kumar and Vandana Gupta

– The purpose of this paper is to study the propagation of Rayleigh waves in thermoelastic medium with mass diffusion.

Abstract

Purpose

The purpose of this paper is to study the propagation of Rayleigh waves in thermoelastic medium with mass diffusion.

Design/methodology/approach

The field equations for the linear theory of homogeneous isotropic thermoelastic diffusion medium are taken into consideration by using dual-phase-lag heat transfer (DPLT) and dual-phase-lag diffusion (DPLD) models. Using the potential functions and harmonic wave solution, three coupled dilatational waves and a shear wave is obtained. After developing mathematical formulation, the dispersion equation is obtained, which results to be complex and irrational. This equation is converted into a polynomial form of higher degree.

Findings

From the polynomial equation, Rayleigh wave root is found. The secular equation is resolved into a polynomial form to find the roots and therefore to find the existence and propagation of Rayleigh wave. The existence of Rayleigh wave in the assumed model depends on the values of various parameters involved in the secular equation. These roots are resolved for phase velocity and attenuation of the inhomogeneous propagation of Rayleigh wave. Behavior of particle motion of these waves inside and at the surface of the thermoelastic medium with mass diffusion is studied. Particular cases of the interest are also deduced from the present investigation.

Originality/value

Governing equations corresponding to DPLT and DPLD models of thermoelastic diffusion are formulated to study the wave propagation and their dependence on various material parameters. In this paper effects of thermal and diffusion phase lags on the phase velocity, attenuation and on particle paths are observed and depicted graphically.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 December 2020

Na Liu

The purpose of this paper is to study the homoclinic breather waves, rogue waves and multi-soliton waves of the (2 + 1)-dimensional Mel’nikov equation, which describes an…

Abstract

Purpose

The purpose of this paper is to study the homoclinic breather waves, rogue waves and multi-soliton waves of the (2 + 1)-dimensional Mel’nikov equation, which describes an interaction of long waves with short wave packets.

Design/methodology/approach

The author applies the Hirota’s bilinear method, extended homoclinic test approach and parameter limit method to construct the homoclinic breather waves and rogue waves of the (2 + 1)-dimensional Mel’nikov equation. Moreover, multi-soliton waves are constructed by using the three-wave method.

Findings

The results imply that the (2 + 1)-dimensional Mel’nikov equation has breather waves, rogue waves and multi-soliton waves. Moreover, the dynamic properties of such solutions are displayed vividly by figures.

Research limitations/implications

This paper presents efficient methods to find breather waves, rogue waves and multi-soliton waves for nonlinear evolution equations.

Originality/value

The outcome suggests that the extreme behavior of the homoclinic breather waves yields the rogue waves. Moreover, the multi-soliton waves are constructed, including the new breather two-solitary and two-soliton solutions. Meanwhile, the dynamics of these solutions will greatly enrich the diversity of the dynamics of the (2 + 1)-dimensional Mel’nikov equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2018

Lian-Li Feng and Tian-Tian Zhang

The purpose of this paper is to find homoclinic breather waves, rogue waves and soliton waves for a (3 + 1)-dimensional generalized Kadomtsev–Petviashvili (gKP) equation, which…

Abstract

Purpose

The purpose of this paper is to find homoclinic breather waves, rogue waves and soliton waves for a (3 + 1)-dimensional generalized Kadomtsev–Petviashvili (gKP) equation, which can be used to describe the propagation of weakly nonlinear dispersive long waves on the surface of a fluid.

Design/methodology/approach

The authors apply the extended Bell polynomial approach, Hirota’s bilinear method and the homoclinic test technique to find the rogue waves, homoclinic breather waves and soliton waves of the (3 + 1)-dimensional gKP equation.

Findings

The results imply that the gKP equation admits rogue waves, homoclinic breather waves and soliton waves. Moreover, the authors also find that rogue waves can come from the extreme behavior of the breather solitary wave. The authors analyze the propagation and interaction properties of these solutions to better understand the dynamic behavior of these solutions.

Originality/value

These results may help us to further study the local structure and the interaction of waves in KP-type equations. It is hoped that the results can help enrich the dynamic behavior of such equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2015

Christophe Rouzaud, Fabrice Gatuingt, Olivier Dorival, Guillaume Herve and Louis Kovalevsky

The determination of the vibration induced by an aircraft impact on an industrial structure requires dynamic studies. The determination of the response by using classical finite…

Abstract

Purpose

The determination of the vibration induced by an aircraft impact on an industrial structure requires dynamic studies. The determination of the response by using classical finite element method associated with explicit numerical schemes requires significant calculation time, especially during the transient stage. This kind of calculation requires several load cases to be analyzed in order to consider a wide range of scenarios. Moreover, a large frequency range has to be appropriately considered and therefore the mesh has to be very fine, resulting in a refined time discretization. The purpose of this paper is to develop new ways for calculating the shaking of reinforced concrete structures following a commercial aircraft impact (see Figure 1). The cutoff frequency for this type of loading is typically within the 50-100 Hz range, which would be referred to as the medium-frequency range.

Design/methodology/approach

Taking into account this type of problem and assuming that the structure is appropriately sized to withstand an aircraft impact, the vibrations induced by the shock bring about shaking of the structure. Then these vibrations can travel along the containment building, as directly linked with the impact zone, but also in the inner part of the structure due to the connection with the containment building by the raft. So the excited frequency range, due to the impact of a commercial aircraft, contains two frequency ranges: low frequencies (less than ten wavelengths in the structure) and medium frequencies (between ten and 100 wavelengths). The strategy, which is presented in this paper, is inscribed in the context of the verification of inner equipment under this kind of shaking. The non-linear impact zone is assumed to have been delimited with classical finite element simulations. In this paper the authors only focus on the response of the linear part of the structure. This phenomenon induces a non-linear localized area around the impact zone.

Findings

So the medium frequencies can therefore induce significant displacements and stresses at the level of equipment and thus cause damage if the structure is not dimensioning to this frequency range.

Research limitations/implications

In this context the use of finite elements method for the resolution of the shaking implies a spatial discretization in correlation with the number of wavelengths to represent, and thus a long computation time especially for medium frequencies. That is why in the case of a coarse mesh the medium-frequency range is ignored. For example, a concrete structure with a characteristic dimension of about 30 and 1 m of thickness, may not represent frequencies higher than 16 Hz with a mesh size of 1 m (assuming ten elements per wavelength).

Practical implications

The paper includes implications for proper dimensioning civil engineering structures subjected to a load case containing a large frequency range.

Originality/value

This paper shows the gain of the strategy using appropriate method to medium frequencies compared to conventional method such as finite elements.

Details

Engineering Computations, vol. 32 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 15000