Search results

1 – 10 of 23
Article
Publication date: 25 January 2024

Xiaoxuan Lin, Xiong Sang, Yuyan Zhu and Yichen Zhang

This paper aims to investigate the preparation of AlN and Al2O3, as well as the effect of nano-AlN and nano-Al2O3, on friction and wear properties of copper-steel clad plate…

Abstract

Purpose

This paper aims to investigate the preparation of AlN and Al2O3, as well as the effect of nano-AlN and nano-Al2O3, on friction and wear properties of copper-steel clad plate immersed in the lubricants.

Design/methodology/approach

Nano-AlN or nano-Al2O3 (0.1, 0.2, 0.3, 0.4 and 0.5 Wt.%) functional fluids were prepared. Their tribological properties were tested by an MRS-10A four-ball friction tester and a ball-on-plate configuration, and scanning electron microscope observed the worn surface of the plate.

Findings

An increase in nano-AlN and Al2O3 content enhances the extreme pressure and anti-wear performance of the lubricant. The best performance is achieved at 0.5 Wt.% of nano-AlN and 0.3 Wt.% of nano-Al2O3 with PB of 834 N and 883 N, a coefficient of friction (COF) of approximately 0.07 and 0.06, respectively. Furthermore, the inclusion of nano-AlN and nano-Al2O3 particles in the lubricant enhances its extreme pressure performance and reduces wear, leading to decreased wear spot depth. The lubricating effect of the nano-Al2O3 lubricant on the surface of the copper-steel composite plate is slightly superior to that of the nano-AlN lubricant, with a COF reaching 0.07. Both lubricants effectively fill and lubricate the holes on the surface of the copper-steel composite plate.

Originality/value

AlN and Al2O3 as water-based lubricants have excellent lubrication performance and can reduce the COF. It can provide some reference for the practical application of nano-water-based lubricants.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0255/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 August 2023

Jiayuan Yan, Xiaoliang Zhang and Yanming Wang

As a high-performance engineering plastic, polyimide (PI) is widely used in the aerospace, electronics and automotive industries. This paper aims to review the latest progress in…

Abstract

Purpose

As a high-performance engineering plastic, polyimide (PI) is widely used in the aerospace, electronics and automotive industries. This paper aims to review the latest progress in the tribological properties of PI-based composites, especially the effects of nanofiller selection, composite structure design and material modification on the tribological and mechanical properties of PI-matrix composites.

Design/methodology/approach

The preparation technology of PI and its composites is introduced and the effects of carbon nanotubes (CNTs), carbon fibers (CFs), graphene and its derivatives on the mechanical and tribological properties of PI-based composites are discussed. The effects of different nanofillers on tensile strength, tensile modulus, coefficient of friction and wear rate of PI-based composites are compared.

Findings

CNTs can serve as the strengthening and lubricating phase of PI, whereas CFs can significantly enhance the mechanical properties of the matrix. Two-dimensional graphene and its derivatives have a high modulus of elasticity and self-lubricating properties, making them ideal nanofillers to improve the lubrication performance of PI. In addition, copolymerization can improve the fracture toughness and impact resistance of PI, thereby enhancing its mechanical properties.

Originality/value

The mechanical and tribological properties of PI matrix composites vary depending on the nanofiller. Compared with nanofibers and nanoparticles, layered reinforcements can better improve the friction properties of PI composites. The synergistic effect of different composite fillers will become an important research system in the field of tribology in the future.

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 May 2023

Jian Sun, Guangxiang Zhang, Zhongxian Xia, Zhigang Bao, Jinmei Yao, Xin Fang, Zhe Zhang and Renyun Guan

To understand the service performance of full ceramic ball bearings under extreme working conditions and improve their service life, dynamic characteristic tests of full ceramic…

Abstract

Purpose

To understand the service performance of full ceramic ball bearings under extreme working conditions and improve their service life, dynamic characteristic tests of full ceramic ball bearings under ultra-low temperature conditions were carried out by a low-temperature bearing life testing machine, and temperature rise and friction were measured under extreme low-temperature environment.

Design/methodology/approach

The heat-flow coupling model of bearing was established by CFD software, and the test results were further analyzed.

Findings

The results show that the temperature rise of the bearing is not obvious in the liquid nitrogen environment. With the increase of the chamber temperature, the lubrication state of the bearing changes, resulting in the temperature rise of the outer ring of the bearing. As the temperature of the test chamber increases, the friction force on the bearing increases first and then decreases under the action of multifactor coupling.

Research limitations/implications

The research results provide test data and theoretical basis for the application of all-ceramic ball bearings in aerospace and other fields and have important significance for improving the service life of high-end equipment under extreme working conditions.

Practical implications

The research results provide test data and theoretical basis for the application of full ceramic ball bearings in aerospace and other fields and have important significance for improving the service life of high-end equipment under extreme working conditions.

Social implications

The research results provide test data and theoretical basis for the application of full ceramic ball bearings in aerospace and other fields and have important significance for improving the service life of high-end equipment under extreme working conditions.

Originality/value

The research results provide test data and theoretical basis for the application of full ceramic ball bearings in aerospace and other fields and have important significance for improving the service life of high-end equipment under extreme working conditions.

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 September 2023

Talwinder Singh, Chandan Deep Singh and Rajdeep Singh

Because many cutting fluids contain hazardous chemical constituents, industries and researchers are looking for alternative methods to reduce the consumption of cutting fluids in…

150

Abstract

Purpose

Because many cutting fluids contain hazardous chemical constituents, industries and researchers are looking for alternative methods to reduce the consumption of cutting fluids in machining operations due to growing awareness of ecological and health issues, government strict environmental regulations and economic pressures. Therefore, the purpose of this study is to raise awareness of the minimum quantity lubrication (MQL) technique as a potential substitute for environmental restricted wet (flooded) machining situations.

Design/methodology/approach

The methodology adopted for conducting a review in this study includes four sections: establishment of MQL technique and review of MQL machining performance comparison with dry and wet (flooded) environments; analysis of the past literature to examine MQL turning performance under mono nanofluids (M-NF); MQL turning performance evaluation under hybrid nanofluids (H-NF); and MQL milling, drilling and grinding performance assessment under M-NF and H-NF.

Findings

From the extensive review, it has been found that MQL results in lower cutting zone temperature, reduction in cutting forces, enhanced tool life and better machined surface quality compared to dry and wet cutting conditions. Also, MQL under H-NF discloses notably improved tribo-performance due to the synergistic effect caused by the physical encapsulation of spherical nanoparticles between the nanosheets of lamellar structured nanoparticles when compared with M-NF. The findings of this study recommend that MQL with nanofluids can replace dry and flood lubrication conditions for superior machining performance.

Practical implications

Machining under the MQL regime provides a dry, clean, healthy and pollution-free working area, thereby resulting the machining of materials green and environmentally friendly.

Originality/value

This paper describes the suitability of MQL for different machining operations using M-NF and H-NF.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0131/

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 May 2023

Mu’taz AlTarawneh and Salloom AlJuboori

Studies on this topic have shown the remarkable lubricating properties, viz. friction-reducing and anti-wear, of certain nanoparticles. This makes them potential candidates for…

Abstract

Purpose

Studies on this topic have shown the remarkable lubricating properties, viz. friction-reducing and anti-wear, of certain nanoparticles. This makes them potential candidates for replacing the lubrication additives currently used in automobile lubricants, especially because the latter is known to be pollutants and less efficient in some specific conditions. This has not gone unnoticed to professionals in the sector, including those commercializing these additives, the oil companies and the car industry, all of whom are following this burgeoning research area with keen interest. All of them are faced with the problem of providing lubricants that meet the needs of the technological evolution of engines while respecting ever-stricter environmental norms.

Design/methodology/approach

The impact of copper oxide (CuO) and zinc oxide (ZnO) nanoparticles on the tribological properties of the SAE-40 pure diesel oil is studied in this paper. The two nanoparticles are not oxide or deteriorate with the base oil. The average size of CuO and ZnO nanoparticles is 40 and 20 nm, respectively. Nanoparticle concentrations of 0.1 Wt.%, 0.2 Wt.%, 0.3 Wt.%, 0.4 Wt.% and 0.5 Wt.% are tested using a pin-on-disk tribometer to evaluate their impact on friction and wear. The test is carried out at different loads and rotating speeds of 58.86 N and 300 rpm, 39.24 N and 500 rpm and 78.48 N and 900 rpm at room temperature, respectively.

Findings

The obtained results of the nanolubricants are compared with those of pure diesel oil in terms of % improvement in tribological properties. However, it is observed that an increase in the nanoparticle concentrations does not guarantee to enhance the tribological properties. Similarly, increasing the applied load and the rotating speed does not lead to improving the anti-friction and anti-wear properties. The results obtained revealed that the optimal improvements in the anti-friction and anti-wear properties of the pure oil are 69% and 77% when CuO nanoparticle concentrations of 0.3 Wt.% and the ZnO nanoparticle concentrations of 0.1 Wt.% are used, where the applied load and rotating speed are 39.24 N and 500 rpm, respectively. It has also been noticed that the CuO nanolubricants have a significant impact on the anti-friction property compared with ZnO nanolubricants.

Originality/value

All these nanoparticles have been the subject of detailed investigation in this research and many key issues have been tackled, such as the conditions leading to these properties, the lubrication mechanisms coming into play, the influence of parameters such as size, structure and morphology of the nanoparticles on their tribological properties/lubrication mechanisms and the interactions between the particles and the lubricant co-additives. To answer such questions, state-of-the-art characterization techniques are required, often in situ, and sometimes an extremely complex set up. Some of these can even visualize the behavior of a nanoparticle in real time during a tribological test. The research on this topic has given a good understanding of the way these nanoparticles behave, and we can now identify the key parameters to be adjusted when optimizing their lubrication properties.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2022-0234/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 September 2023

Peiwen Sun, Jianwei Yang, AiHua Zhu, Zhongshuo Hu, Jinhai Wang, Fu Liu and Xiaohui Wang

The CL60 steel wheels of subway vehicles operating on specific lines require frequent refurbishment due to rapid wear and tear. Considering this issue, MoS2-based and…

Abstract

Purpose

The CL60 steel wheels of subway vehicles operating on specific lines require frequent refurbishment due to rapid wear and tear. Considering this issue, MoS2-based and graphite-based solid lubricants are used to reduce the wear rate of subway wheels and extend their service life.

Design/methodology/approach

Under laboratory conditions, the effect of MoS2-based and graphite-based solid lubricants on the friction and wear performance of subway wheels and rails was evaluated using a modified GPM-60 wear testing machine.

Findings

Under laboratory conditions, MoS2-based solid lubricants have the best effect in reducing wheel/rail wear, compared to the control group without lubrication, at 2 × 105 revolutions, the total wheel-rail wear decreased by 95.07%. However, when three types of solid lubricants are used separately, the hardness evolution of the wheel-rail contact surface exhibits different characteristics.

Practical implications

The research results provide important support for improving the lifespan of wheel and rail, extending the service cycle of wheel and rail, reducing the operating costs of subway systems, improving the safety of subway systems and providing wear reduction maintenance for other high wear mechanical components.

Originality/value

The experiment was conducted through the design and modification of a GPM-60 testing machine for wear testing. The experiment simulated the wheel-rail contact situation under actual subway operation and evaluated the effects of three different solid lubricants, MoS2-based and graphite-based, on the wear performance and surface hardening evolution of subway wheel-rail.

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 August 2023

Yuan Liu, Chang Dong, Xianzhang Wang, Xiao Sang, Liran Ma, Xuefeng Xu and Yu Tian

The purpose of this study is to reveal the underlying mechanism in film formation of oil-in-water (O/W) emulsion.

Abstract

Purpose

The purpose of this study is to reveal the underlying mechanism in film formation of oil-in-water (O/W) emulsion.

Design/methodology/approach

This study focuses on the film forming characteristics of O/W emulsion between the surface of a steel ball and a glass disc coated with chromium. The lubricant film thicknesses of O/W emulsion with various mechanical stirring strength were discussed, which were observed by technique of relative optical interference intensity.

Findings

The authors directly observed the oil pool in the contact area, finding the size of oil pool was closely related to the film-forming ability of emulsion. Enrichment phenomenon occurs in oil pool, which was caused by phase inversion. Further investigations revealed that the emulsion is stable with strong stirring strength, resulting in a smaller oil pool size and worse film forming ability.

Originality/value

With the wide usage of O/W emulsion in both biological and industrial systems, the ability of emulsion film formation is considered as an important factor to evaluate the lubrication effectiveness.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2022-0354/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 March 2024

Devender, Paras Ram and Kushal Sharma

The present article aims to investigate the squeeze effects on hematite suspension-based curved annular plates with Rosensweig’s viscosity and Kozeny–Carman’s porous structure…

Abstract

Purpose

The present article aims to investigate the squeeze effects on hematite suspension-based curved annular plates with Rosensweig’s viscosity and Kozeny–Carman’s porous structure under the variable strong magnetic field and slip in the Shliomis model. The variable magnetic field is utilised to retain all magnetic elements within the model. The aforementioned mechanism would have the benefit of generating a maximal field at the system’s required active contact zone.

Design/methodology/approach

The Kozeny–Carman globular sphere model is used for porous facing. Rosensweig’s extension of Einstein’s viscosity is taken into consideration to enhance the fluid’s viscosity, and Beavers and Joseph’s slip boundary conditions are employed to assess the slip effect.

Findings

The pressure and lifting force under squeezing are computed through modification of the Reynolds equation with the addition of Kozeny–Carman’s model-based porosity, Rosensweig’s viscosity, slip and varying magnetic field. The obtained results for the lifting force are very encouraging and have been compared with Einstein’s viscosity-based model.

Originality/value

Researchers so far have carried out problems on lubrication of various sliders considering Einstein’s viscosity only, whereas in our problem, Rosensweig’s viscosity has been taken along with Kozeny–Carman’s porous structure model.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 26 May 2023

Soumya Ranjan Guru, Chetla Venugopal and Mihir Sarangi

This study aims to investigate the behavior of vegetable oil with two additives. Base oil’s tribological qualities can be improved with the help of several additions. In the…

Abstract

Purpose

This study aims to investigate the behavior of vegetable oil with two additives. Base oil’s tribological qualities can be improved with the help of several additions. In the present investigation, soybean oil is served as the foundational oil due to its eco-friendliness and status as a vegetable oil with two additives, named polytetrafluoroethylene (PTFE) and molybdenum disulfide (MoS2).

Design/methodology/approach

As additives, PTFE and MoS2 are used; PTFE is renowned for its anti-friction (AF) properties, while MoS2 is a solid lubricant with anti-wear (AW) properties. This investigation examines the synergistic impact of AF and AW additions in vegetable oil. The lubricity of the base oil is measured by using a four-ball tester, and the wear properties of the oil at different additive amounts are determined by using a universal tribometer.

Findings

PTFE (at 5 Wt.%) and MoS2 (at 1 Wt.%) were found to improve the tribological performance of the base oil. The weld load is significantly increased when 5 Wt.% of PTFE + MoS2 is added to the base oil.

Originality/value

A better tribological characteristic can be achieved by combining additives that amount to less than 1% of the base oil. In experiments with highly concentrated MoS2, the adequate pressure improved dramatically, but the lubricant’s tribological characteristics did not.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0321/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 December 2023

Nivin Vincent and Franklin Robert John

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to…

Abstract

Purpose

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to fulfil future needs; to determine the viability of particular strategies and actions performed to increase the process efficiency of electrical discharge machining; and to uphold the values of sustainability in the nonconventional manufacturing sector and to identify future works in this regard.

Design/methodology/approach

A thorough analysis of numerous experimental studies and findings is conducted. This prominent nontraditional machining process’s potential machinability and sustainability challenges are discussed, along with the current research to alleviate them. The focus is placed on modifications to the dielectric fluid, choosing affordable substitutes and treating consumable tool electrodes.

Findings

Trans-esterified vegetable oils, which are biodegradable and can be used as a substitute for conventional dielectric fluids, provide pollution-free machining with enhanced surface finish and material removal rates. Modifying the dielectric fluid with specific nanomaterials could increase the machining rate and demonstrate a decrease in machining flaws such as micropores, globules and microcracks. Tool electrodes subjected to cryogenic treatment have shown reduced tool metal consumption and downtime for the setup.

Practical implications

The findings suggested eco-friendly machining techniques and optimized control settings that reduce energy consumption, lowering operating expenses and carbon footprints. Using eco-friendly dielectrics, including vegetable oils or biodegradable dielectric fluids, might lessen the adverse effects of the electrical discharge machine operations on the environment. Adopting sustainable practices might enhance a business’s reputation with the public, shareholders and clients because sustainability is becoming increasingly significant across various industries.

Originality/value

A detailed general review of green nontraditional electrical discharge machining process is provided, from high-quality indexed journals. The findings and results contemplated in this review paper can lead the research community to collectively apply it in sustainable techniques to enhance machinability and reduce environmental effects.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 23