Search results

1 – 10 of over 2000
Article
Publication date: 20 October 2020

Bin Xiao, Xiaolin Zheng, Yi Zhou, Dan Yao and Yang Wan

This study aims to evaluate the tribological behavior of water-lubricated rubber bearings sliding against stainless steel under different lubricate conditions.

Abstract

Purpose

This study aims to evaluate the tribological behavior of water-lubricated rubber bearings sliding against stainless steel under different lubricate conditions.

Design/methodology/approach

The water-lubricated rubber bearings under various normal loads and sliding speeds were carried out on the ring-block friction test, and the wear morphology is test conducted by using scanning electron microscope.

Findings

The results indicate that the surface of water-lubricated rubber bearings has a more alternative friction coefficient and wear rate under seawater than other lubricate conditions. The seawater not only acts as a lubricating medium but also brings microstructure while corroding the rubber interface, thereby further enhancing the lubricating effect and storing abrasive debris.

Originality/value

In this paper, tribological properties of the water-lubricated rubber bearing on ring-block friction test has been investigated. Water-lubricated rubber bearing was carried out on various lubricate conditions, and the friction coefficient, wear rate and worn surface were analyzed. Also, the effects of sliding speeds were investigated.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2020-0204/

Details

Industrial Lubrication and Tribology, vol. 73 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 January 2022

Liwu Wang, Yanfeng Han, Dongxing Tang and Jianlin Cai

The purpose of this paper is to verify the effectiveness of the proposed transient mixed lubrication and wear coupling model [mixed lubrication and wear (MLW) coupling model…

Abstract

Purpose

The purpose of this paper is to verify the effectiveness of the proposed transient mixed lubrication and wear coupling model [mixed lubrication and wear (MLW) coupling model] under water lubricated conditions by comparing with the experimental results.

Design/methodology/approach

Water lubricated bearings are the key parts of the transmission system of an underwater vehicle and some surface ships. In this study, the friction and wear behaviors of rubber, nylon and polyether ether ketone (PEEK) samples with stainless steel underwater lubrication were compared by using ring-block contact structure on multifunctional friction and wear test bench-5000 friction and wear tester.

Findings

The results show that the transient wear depth and wear amount of PEEK, nylon and rubber samples under water lubrication are in good agreement with the calculated results of the theoretical model, which verifies the rationality and scientific nature of the MLW coupling model. Thus, the numerical model is applicable for the wear prediction of the journal bearing under water-lubricated conditions. Furthermore, numerical and experimental results reveal that the anti-wear performance among three water-lubricated materials can be ranked by: PEEK > nylon > rubber.

Originality/value

It is expected that this study can provide more information for experimental and numerical research of water-lubricated bearings under water-lubricated conditions.

Details

Industrial Lubrication and Tribology, vol. 74 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 March 2020

Zhiming Zhao and Rui Zhang

The hydrodynamic characteristics of liquid film for bearings, especially water-lubricated bearings with a large length-to-diameter ratio, affect the dynamics behavior of rotor…

Abstract

Purpose

The hydrodynamic characteristics of liquid film for bearings, especially water-lubricated bearings with a large length-to-diameter ratio, affect the dynamics behavior of rotor bearing systems. The purpose of this study is to carry out theoretical analysis and experiments to determine the hydrodynamic characteristics of water-lubricated journal bearings.

Design/methodology/approach

The finite difference method is adopted for the simulation of the characteristics of water-lubricated bearings. The comparison results between water-lubricated bearings with and without grooves, as well as with and without the consideration of the effects of rubber deformation, are presented. The test bearings, test bench, and monitoring system, especially the force exciter for the bearing experiment, are presented. Dynamic coefficient identification verification experiments were performed in different working situations. The obtained results include the calibration of magnetic force, two kinds of excitation, vibration data of the rotor system and dynamic coefficients.

Findings

The theoretical results demonstrate that the hydrodynamic effect was obvious when the speed was increased and that the water film had improved capability at a working speed of 1800 rpm. The identification results reveal the lubrication situation of the test bearing under low-speed and high-load conditions. Moreover, it was found that the liquid film was not continuous at low speeds.

Originality/value

The theoretical results can lead to the enhancement of the design level of water-lubricated rubber journal bearings with a large aspect ratio. The experimental results can lead to the improvement of the dynamic behavior design of rotor systems supported using water-lubricated bearings with a large length-to-diameter ratio.

Details

Industrial Lubrication and Tribology, vol. 72 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 August 2018

Chuang Wang, Ziwen Xing, Xi Pan and Zhilong He

The well-operating condition of journal bearing is the assurance to keep superior performance of water-lubricated twin-screw compressor. To design the journal bearing more…

Abstract

Purpose

The well-operating condition of journal bearing is the assurance to keep superior performance of water-lubricated twin-screw compressor. To design the journal bearing more reasonably for this type of compressor, this paper aims to study the effects of rotating speed and design parameters on bearing characteristics, considering surface roughness and bending deformation of the shaft at the same time.

Design/methodology/approach

The average Reynolds equation considering the effect of surface roughness is adopted and solved by finite difference method and successive over-relaxation method to calculate pressure distribution with real bearing shapes and boundary conditions. The bending deformation of the shaft is calculated using simply supported beam model of variable cross-section.

Findings

The dynamic lubrication characteristics of four water-lubricated journal bearings in twin-screw air compressor are calculated and analyzed. In addition, the static characteristics of journal bearing including friction coefficient, film thickness ratio distribution and water film pressure distribution are calculated numerically with different rotating speed and design parameters. Moreover, some design principles of water-lubricated bearing for twin-screw compressor are put forward.

Originality/value

The lubrication characteristics of the water-lubricated journal bearing in twin-screw air compressor are calculated considering surface roughness and bending deformation of the shaft at the same time. The paper’s results may provide design guidelines for journal bearing in this kind of twin-screw compressor.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 February 2015

Gao Gengyuan, Yin Zhongwei, Jiang Dan and Zhang Xiuli

The purpose of this paper is to improve hydrodynamic load-carrying capacity of a water-lubricated journal bearing by a new bush structure. Water-lubricated bearing is becoming…

Abstract

Purpose

The purpose of this paper is to improve hydrodynamic load-carrying capacity of a water-lubricated journal bearing by a new bush structure. Water-lubricated bearing is becoming more and more popular since it is environmentally friendly and saves energy. However, contrary to oil and grease-lubricated bearings, water-lubricated bearing is limited in many situations due to its low hydrodynamic load-carrying capacity.

Design/methodology/approach

The present article proposes a new bearing bush, with a transition-arc structure, which is favorable for increasing hydrodynamic load-carrying capacity. Hydrodynamic load-carrying capacity was calculated by means of three-dimensional computational fluid dynamics (3-D CFD) analysis. Several variants of a journal bearing with a transition-arc structure of different dimensions are analyzed, while the radial clearance of the bearing, eccentricity ratio and the velocity of the journal remain unchanged.

Findings

The results show that obvious changes are found in hydrodynamic load-carrying capacity of a water-lubricated journal bearing. For different width over diameter (L/D) bearing ratios, the relationship between hydrodynamic load-carrying capacity and the magnitude of the transition-arc structure dimension is researched.

Originality/value

The research presented here leads to a design reference guideline that could be used by the designer engineer to design smart journal bearings for improving the hydrodynamic load-carrying capacity.

Details

Industrial Lubrication and Tribology, vol. 67 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 August 2018

Huihui Feng and Liping Peng

This paper aims to establish the mathematical models for the water-lubricated thrust bearing with groove texture considering turbulence and cavitation and numerically analyze the…

Abstract

Purpose

This paper aims to establish the mathematical models for the water-lubricated thrust bearing with groove texture considering turbulence and cavitation and numerically analyze the influence of rotary speed, texture depth, groove number and groove width on the static performance of the bearing.

Design/methodology/approach

The turbulent Reynolds equation and the Jakobsson–Floberg–Olsson cavitation model are adopted for the analysis. The Payvar–Salant algorithm and Finite difference schemes are used to discretize the governing equations. To illustrate the influence of turbulence, the performance of the bearing predicted by the turbulent and laminar models are compared.

Findings

According to the results, the load capacity and the friction force calculated by the turbulent model are greater than those obtained by laminar model, and the deviation between them gradually increases with the increased rotary speed. So, the turbulent effect should be fully considered for high-speed water-lubricated bearing with surface texture. There exists a peak value for the load capacity of the water-lubricated thrust bearing in respect to the texture depth, the number of grooves and the groove width ratio, while the friction force varies slowly with those parameters. Well-designed groove texture can improve the performance of the water-lubricated thrust bearing.

Originality/value

This paper proposes a mathematical model considering turbulent and cavitation effect for water-lubricated thrust bearing with surface texture. This model can be complementary to conventional laminar model which is used to analyze the performance of textured bearing at low rotary speed.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 November 2017

Dawit Zenebe Segu and Pyung Hwang

This study aims to compare the friction and wear behaviors of Fe68.3C6.9Si2.5 B6.7P8.8Cr2.2Al2.1Mo2.5 bulk metallic glass (BMG) under sliding using dry, deionized water-lubricated

Abstract

Purpose

This study aims to compare the friction and wear behaviors of Fe68.3C6.9Si2.5 B6.7P8.8Cr2.2Al2.1Mo2.5 bulk metallic glass (BMG) under sliding using dry, deionized water-lubricated and oil-lubricated conditions. The comparison was performed using a unidirectional ball-on-flat tribometer under different applied loads, and the results were compared to the properties of a conventional material, SUJ2. Fe-based BMG materials have recently been attracting a great deal of attention for prospective engineering applications.

Design/methodology/approach

As a part of the development of Fe-based BMGs that can be cost-effectively produced in large quantities, an Fe-based BMG Fe68.8C7.0Si3.5B5.0P9.6 Cr2.1Mo2.0Al2.0 with high glass forming ability was fabricated. In the present study, the friction and wear properties of Fe-based BMG has been comparatively evaluated under dry sliding, deionized water- and oil-lubricated conditions using a unidirectional ball-on-flat tribometer under different applied loads, and the results were compared to the properties of conventional material SUJ2.

Findings

The results show that the Fe-based BMG had better friction performance than the conventional material. Both the friction coefficient and wear mass loss increased with increasing load. The sliding wear mechanism of the BMG changed with the sliding conditions. Under dry sliding conditions, the wear scar of the Fe-based BMG was characterized by abrasive wear, plastic deformation, micro-cracks and peeling-off wear. Under water- and oil-lubricated conditions, the wear scar was mainly characterized by abrasive wear and micro-cutting.

Originality/value

In this investigation, the authors developed a new BMG alloy Fe68.8C7.0Si3.5B5.0P9.6Cr2.1Mo2.0Al2.0 to improve the friction and wear performance under dry sliding, deionized water- and oil- lubricated conditions.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 April 2016

Yanzhen Wang, Zhongwei Yin, Dan Jiang, Gengyuan Gao and Xiuli Zhang

Water lubrication is significant for its environmental friendliness. Composite journal bearing is liable to deform for the huge pressure of water film. This paper aims to study…

Abstract

Purpose

Water lubrication is significant for its environmental friendliness. Composite journal bearing is liable to deform for the huge pressure of water film. This paper aims to study the influence of elastic deformation on how lubrication functions in water-lubricated journal bearings and to provide references for designing composite journal bearings.

Design/methodology/approach

The combination of computational fluid dynamics and fluid-structure interaction is adopted in this paper to study the lubrication performance of water-lubricated compliant journal bearings. The influences of elasticity modulus and Poisson’s ratio on load-carrying capacity and elastic deformation are studied for different rotational speeds. Predictions in this work are compared with the published experimental results, and the present work agrees well with the experimental results.

Findings

A reference whether elastic deformation should be considered for composite journal bearings is proposed under different working conditions. Besides, a reference to determine water-lubricated plain journal bearings dimensions under different loads and rotational speeds is developed with the effect of both elastic deformation and cavitation being accounted.

Originality/value

The present research provides references as to whether elastic deformation should be considered in operation and to determine compliant journal bearings’ dimensions in the design process.

Details

Industrial Lubrication and Tribology, vol. 68 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 June 2015

Nan Wang and Qingfeng Meng

The purpose of this paper is to provide a nondestructive monitoring method based on wireless sensor technology to measure the continuous circumferential film pressure on radial…

Abstract

Purpose

The purpose of this paper is to provide a nondestructive monitoring method based on wireless sensor technology to measure the continuous circumferential film pressure on radial cross-section of water-lubricated bearing, in addition, to study the influence factors to wireless communication.

Design/methodology/approach

The unique shaft and wireless equipments are designed, the pressure sensors are installed in right shoulder of shaft, the wireless transmitter is installed at the end of shaft and the sensors are connected with wireless transmitter by data cable. By this way, the film pressure can be obtained via wireless communication. The film pressure of eight grooved water-lubricated rubber bearings with concave staves is measured, the performance evaluation of wireless equipments is conducted and the influence factors to wireless communication is analyzed by Doppler frequency shift theory.

Findings

The rupturing and nonuniform water film is observed, the grooves decrease the film pressure of rubber bearing which is in mixed lubricating state. The main influence factor to wireless communication is shaft speed which has greater effect on packet loss rate than that on bit error rate.

Practical implications

By studying the actual continuous water film pressure, the bearing properties can be studied in-depth, and this has significant meaning to the design and application of bearing. Moreover, the study on influence factors to wireless communication can be used for references to other wireless monitoring on rotating machinery.

Originality/value

The continuous water film pressure can be monitored by this method, the lubricating state of bearing working surface cannot be damaged and the signal attenuation can be avoided. Therefore, the measuring accuracy is promoted and the measuring process also becomes convenient and high efficiency.

Details

Industrial Lubrication and Tribology, vol. 67 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 March 2014

You-Qiang Wang, Xiu-Jiang Shi and Li-Jing Zhang

Water-lubricated rubber bearing is one of the most appropriate bearings for underwater use. The most popular design used widely today is the straight fluted rubber bearing. The…

Abstract

Purpose

Water-lubricated rubber bearing is one of the most appropriate bearings for underwater use. The most popular design used widely today is the straight fluted rubber bearing. The special configuration leads to partial hydrodynamic lubrication and low load capacity. A new bearing bush structure with two cavities which is favorable for constructing continuous hydrodynamic lubrication was designed and studied. The paper aims to discuss these issues.

Design/methodology/approach

A new bearing bush structure with two cavities which is favorable for constructing continuous hydrodynamic lubrication was designed. The apparatus for studying the tribological behaviors of the two types of water-lubricated rubber bearings has been devised and established in the paper. The experimental studies on the tribological properties of the rubber bearings have been conducted under different loads and velocities. The eccentricity ratio of the new structure rubber bearing with two cavities was measured in experiment and the load capacity was calculated by numerical simulation.

Findings

The experimental results show that the friction coefficient decreases with increasing velocity; the friction coefficient increases sharply with the rising temperature, the friction coefficient increases at first and then decreases with increasing load for fluted rubber bearings. The numerical results were in good agreement with the experimental results. The numerical results show that complete hydrodynamic lubrication can be formed in the new designed rubber bearing with two cavities. The experimental and numerical results all indicate that there is an appropriate bearing clearance which the friction coefficient is minimum and the load capacity is maximum.

Originality/value

A new bearing bush structure with two cavities which is beneficial to constructing continuous hydrodynamic lubrication film was designed. A new apparatus for studying the tribological behaviors of the two types of water-lubricated rubber bearings has been devised and established. Experimental and numerical study on the new structure rubber bearing were conducted in the paper.

Details

Industrial Lubrication and Tribology, vol. 66 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 2000