Search results

1 – 10 of 376
Article
Publication date: 21 July 2020

Haisang Liu, Gaoming Jiang, Zhijia Dong, Fenglin Xia and Honglian Cong

The size prediction of garment is an important part in the process of the garment design and production, and it is also one of the most important features in warp-knitted

Abstract

Purpose

The size prediction of garment is an important part in the process of the garment design and production, and it is also one of the most important features in warp-knitted computer-aided design system. The purpose of this paper is to realize the auto-generation of the garment templates using JavaScript and WebGL technologies, based on the prediction of the size of warp-knitted seamless sportswear.

Design/methodology/approach

The warp-knitted jacquard technology is used to produce the warp-knitted seamless sportswear, which is divided into suits and tights. In order to achieve the purpose of this study, the dimensions of four kinds of jacquard patterns knitted under different knitting conditions are measured and the crosswise and longitudinal size shrinkage percentages are also calculated. Then, the relationship between the yarn count and the drawing density as well as the size shrinkage percentage is studied and a size prediction model for warp-knitted jacquard fabric is established. Next, according to the results of the size calculation, the point positions of the garment boundary in the mathematical coordinate system is determined. The color formula is built by the two-dimensional mathematical matrix. Finally, combined with the coordinate position and color information, the template can be drawn automatically.

Findings

Based on the size prediction model of warp-knitted garment, the template generation of warp-knitted full-form sportswear on WebGL-enabled web browser is realized, which is proven to be an effective computer-aided design method for warp-knitted garments.

Research limitations/implications

Because of limited researches, only two groups of yarns and four kinds of jacquard patterns were studied. A vaster database should be built and smooth curve, accurate coordinate needs to be optimized in the further research.

Practical implications

The size prediction model for warp-knitted jacquard garment and garment template auto-generation of warp-knitted computer-aided design system will simplify the fabric technical design process, shorten design time and improve the efficiency of new product development.

Social implications

The size prediction model for warp-knitted jacquard garment and garment template auto-generation of warp-knitted computer-aided design system will provide the industries a guidance for new sample development and it also can shorten the development time and lower cost.

Originality/value

This author analyzes the relationship between the size characteristics and knitting technology of warp-knitted jacquard patterns, proposes a model of size prediction and realizes the auto-drawing of the garment template in the warp-knitted CAD system, which provides a reference for the new product design and development of warp-knitted seamless sportswear.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 January 2024

Haisang Liu, Gaoming Jiang and Zhijia Dong

The warp-knitted fully-formed shorts are one kind of fully-formed garments knitted by a double-needle bar machine, which is widely used in the medical field. Because of its…

Abstract

Purpose

The warp-knitted fully-formed shorts are one kind of fully-formed garments knitted by a double-needle bar machine, which is widely used in the medical field. Because of its distinctive forming method, designers are unable to grasp the final effect of the product accurately during the design process. The purpose of this paper is to clarify a visible 3D simulation method in the design process along with the knitting method and structure characteristics, which is reflected in the final product effect.

Design/methodology/approach

This study introduces a simulation process for warp-knitted fully-formed fabric from an input 3D surface model group. Stitch mesh models are established according to the garment structure and the triangle index of the garment model that swchape-controlling points belong to is calculated. The garment model group includes a 2D plate and a 3D model, between which there is a space coordinate transformation relationship. The study makes use of the 3D tubes to connect the coordinate points in order and render the tubes in real yarn colors. The effects of two parameters, radial segment and tubular segment, are analyzed and decided to obtain a fine surface within a reasonable rendering time.

Findings

A stereoscopic simulation process from flat fabric to 3D product is realized using computer graphics technology. The warp-knitted fully-formed short is shown during the design process within a short time by setting the rendering parameters of tubular segments (ts = 125) and radial segments (rs = 6).

Originality/value

Visual simulation for the shorts provides a time-saving and resource-saving method for structure design and parameter modification before knitting. There is no need to knit samples repeatedly to satisfy demand, which indicates that it is a saver of time and resources.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 4 December 2017

Natalie Ishmael, Anura Fernando, Sonja Andrew and Lindsey Waterton Taylor

This paper aims to provide an overview of the current manufacturing methods for three-dimensional textile preforms while providing experimental data on the emerging techniques of…

6919

Abstract

Purpose

This paper aims to provide an overview of the current manufacturing methods for three-dimensional textile preforms while providing experimental data on the emerging techniques of combining yarn interlocking with yarn interlooping.

Design/methodology/approach

The paper describes the key textile technologies used for composite manufacture: braiding, weaving and knitting. The various textile preforming methods are suited to different applications; their capabilities and end performance characteristics are analysed.

Findings

Such preforms are used in composites in a wide range of industries, from aerospace to medical and automotive to civil engineering. The paper highlights how the use of knitting technology for preform manufacture has gained wider acceptance due to its flexibility in design and shaping capabilities. The tensile properties of glass fibre knit structures containing inlay yarns interlocked between knitted loops are given, highlighting the importance of reinforcement yarns.

Originality/value

The future trends of reinforcement yarns in knitted structures for improved tensile properties are discussed, with initial experimental data.

Details

Research Journal of Textile and Apparel, vol. 21 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 September 2022

Fei Sun, Haisang Liu, Yuqin Din, Honglian Cong and Zhijia Dong

The purpose of this research is to propose a flexible sensor with a weft-knitted float stitch structure and to explore knitting techniques that allow conductive yarns to be…

Abstract

Purpose

The purpose of this research is to propose a flexible sensor with a weft-knitted float stitch structure and to explore knitting techniques that allow conductive yarns to be skin-tight and less exposed, reducing production processes and increasing productivity. Study its electrical conductivity in different yarn materials, knit processes and deformation ranges. The analysis is compared to provide some basis for the design of the electrodes.

Design/methodology/approach

The method includes five operations: (1) Analysis of the morphological appearance, tensile variation, fiber material properties and electrical conductivity of high-elastic and filament silver-plated conductive yarns. (2) Based on the knitting process of the floating yarn structure, three-dimensional modeling of the flexible sensor was carried out to explore the influence of knitting process changes on appearance characteristics. (3) The fabric samples are knitted by different silver-plated conductive yarns with different structures. Processing of experimental samples to finished size by advance shrinkage. (4) Measure the resistance of the experimental sample after the machine has been lowered and after pre-shrinking. Use the stretching machine to simulate a wearing experiment and measure the change in resistance of the sample in the 0–15% stretching range. (5) Analyze the influence factors on the conductive performance of the flexible sensor to determine whether it is suitable for textile flexible sensors.

Findings

For the float knitted flexible sensors, the floating wire projection is influenced by the elasticity of the fabric and the length of the floating wire. Compared to the plain knitted flexible sensors, it has less resistance variation and better electrical properties, making it suitable for making electrodes for textile structures. In addition, the knitting method is integrated with the intelligent monitoring clothing, which saves the process for the integration of the flexible sensor, realizes positioning and fixed-point knitting.

Practical implications

The sensor technology of the designed weft-knitted float structure is varied and can be freely combined and designed in a wide range. Within the good electrical conductivity, the flexible sensor can realize integrated knitting, positioning monitoring, integrating into the appearance of clothing. It can also focus on the wearing experience of wearable products so that the appearance of the monitoring clothing is close to the clothes we wear in our daily life.

Originality/value

In this paper, an integrated positioning knitting flexible sensor based on the weft knitting float structure is studied. The improved knitting process allows the sensing contact surface to be close to the skin and reduces the integration process. The relationship between the exposure of the silver-plated yarn on the clothing surface and the electrical conductivity is analyzed. Within a certain conductive performance, reduces the exposed area of the conductive yarn on the clothing surface and proposes a design reference for the flexible sensor appearance.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 November 2016

Aijun Zhang, Xinxin Li, Pibo Ma, Ying Xiong and Gaoming Jiang

Realistic geometric description is essential for simulating physical properties of warp-knitted velvet fabrics, which are widely used for home-textiles and garments. The purpose…

Abstract

Purpose

Realistic geometric description is essential for simulating physical properties of warp-knitted velvet fabrics, which are widely used for home-textiles and garments. The purpose of this paper is to provide an approach to the description of patterned piles and propose a customized simulation model to realize highly real-time simulation of warp-knitted velvet fabrics in three dimensions.

Design/methodology/approach

Based on knitting technology and structure features, a mathematical model to qualify forming possibility of piles is conducted by assessing underlaps of pattern bars and pile ground bars. When the pile areas and ground areas are classified, a three-dimensional (3D) space coordinate is built, of which the z-axis is divided into equal spaces to form certain multi-layer textured slices. Color and transparency of piles on each textured slice can be computed and generated by mapping to 3D geometrical grid layers with particular mapping relationship. Moreover, piles’ deflection and spatial collision are also taken into account to make sure high uniformity with real fabrics.

Findings

According to the models built, a simulator special for warp-knitted patterned velvet fabrics is programed via Visual C++ and the models are proven practical and easily implemented by comparing simulated effect of one sample with real fabric.

Research limitations/implications

Because of present limited research, 3D simulation of patterned velvet fabrics knitted on double-needle bar Raschel machine as well as 3D shadow effect will be studied in the further research.

Practical implications

The paper includes implications for designing patterned velvet products and shows convenience to instantly see finished effect without sampling on machine.

Originality/value

This paper fulfills a featured simulation method for warp-knitted patterned velvet fabrics in 3D dimensions for the first time.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 November 2006

George K. Stylios

Examines the twelfth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

1097

Abstract

Examines the twelfth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 18 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3540

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 November 2007

George K. Stylios

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1549

Abstract

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 May 2022

Jianping Wang, Deyao Shen, Xiaofeng Yao and Wenqin Lu

Whole garment knitwear is one of the knitwear development trends in the foreseeable future for its advantages of environmental friendliness and wearing comfort. However, the…

Abstract

Purpose

Whole garment knitwear is one of the knitwear development trends in the foreseeable future for its advantages of environmental friendliness and wearing comfort. However, the development of new styles of the whole garment knitwear requires both fashion design and computer programming, which makes it time-consuming and difficult. In this paper, a whole garment knitted skirt template Library is introduced to solve this problem.

Design/methodology/approach

The template library composes of silhouette module, design element module and parts shaping technology module. It was built based on a comprehensive investigation of design and technology. By adhering to the principle of similarity and reusability, the template library of whole garment knitted skirts was established through the innovative design and hierarchical classification of compressed patterns and package patterns.

Findings

With the template library, more than 7.7 × 1025 package pattern templates can be generated through the permutation and combination of the package pattern templates of design elements and parts shaping technology.

Originality/value

The results indicated that it can accelerate the design process and improve the design efficiency of new styles with the template library. This approach can also provide inspiration for the designers and realize rapid response and personalized customization of knitted garment production. In addition, the whole garment templates can be applied into constructing other types of clothing template libraries, such as jackets, pants, etc.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2019

Palani Rajan T., Prakash C. and Ramakrishnan G.

Polyester multifilament is used to produce the face and back layer of warp knitted spacer fabric (WKSF) and these two layers are connected by polyester monofilament as a middle…

Abstract

Purpose

Polyester multifilament is used to produce the face and back layer of warp knitted spacer fabric (WKSF) and these two layers are connected by polyester monofilament as a middle layer. This fabric has unique and extraordinary characteristics, and different possibilities of fabric structure and the middle layer thickness are tried to find out the moisture management properties. The paper aims to discuss these issues.

Design/methodology/approach

This study investigates the influence of fabric thickness and structure on moisture management properties.

Findings

Polyester monofilament quickly up takes the water molecule from the water reservoir and transfers it by capillary action. The gravitational force and the availability space between the two outer surface layers restrict the movement of water molecules, although the pressure develops to push the molecules from the water reservoir. As a result, all the spacer fabric samples attain the equilibrium state very quickly. WKSF and the hexagonal net structure prove to be better in vertical wicking.

Originality/value

The liquid movement is quick in the front side of the spacer fabric, and the rate of wicking is higher in open structure than in the closed structure. It confirms that the hexagonal net structure produces high pore size on fabric and it reaches maximum wicking values. Fabric thickness does not have much influence on the vertical wicking properties of all fabric samples, and the rate of liquid movement produces a similar trend. In in-plane wicking, the polyester monofilament in the middle layer of spacer fabric plays a major role rather than the outer surface layers of fabric.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 376