Search results

1 – 7 of 7
Article
Publication date: 7 January 2021

Wang Jianhong and Wang Yanxiang

The purpose of this paper is to deal with the anomaly detection problem in multi-unmanned aerial vehicles (UAVs) formation that can be transformed to identify some unknown…

Abstract

Purpose

The purpose of this paper is to deal with the anomaly detection problem in multi-unmanned aerial vehicles (UAVs) formation that can be transformed to identify some unknown parameters; a more general nonlinear dynamical model for each UAV is considered to include two terms. Due to an unknown parameter corresponding to the normal or abnormal state for each UAV, the bias-compensated approach is proposed to obtain the unbiased parameter estimation. Meanwhile, the biased error and accuracy analysis are also given in case of strict statistical description of the uncertainty or white noise. To relax this strict statistical description on external noise, an analytic center approach is proposed to identify the unknown parameters in presence of bounded noise, such that two inner and outer ellipsoidal approximations are constructed to include the membership set. To be precise, this paper is regarded as one extension and summary for the author’s previous research on the anomaly detection in multi-UAV formation. Finally, one simulation example is given to confirm the theoretical results.

Design/methodology/approach

Firstly, one extended nonlinear relation is constructed to embody the mutual relationship of UAVs. Secondly, to obtain the unbiased parameter estimations, the bias-compensated approach is applied to achieve it under the condition of white noise. Thirdly, in case of unknown but bounded noise, an analytic center approach is proposed to deal with this special case. Without loss of generality, the author thinks this paper can be used as one extension and summary for research on multi-UAVs formation anomaly detection.

Findings

An anomaly detection problem in multi-UAVs formation can be transformed into a problem of nonlinear system identification, and in modeling the nonlinear dynamical model for each UAV, two terms are considered simultaneously to embody the mutual relationships with other nearest UAV.

Originality/value

To the best knowledge of the authors, this problem of the anomaly detection problem in multi-UAVs formation is proposed by the authors’ previous work, and the problem of multi-UAVs formation anomaly detection can be transferred into one problem of parameter identification. In case of unknown but bounded noise, an analytic center approach is proposed to identify the unknown parameters, which correspond to achieve the goal of the anomaly detection.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 December 2023

Na Xu, Yanxiang Liang, Chaoran Guo, Bo Meng, Xueqing Zhou, Yuting Hu and Bo Zhang

Safety management plays an important part in coal mine construction. Due to complex data, the implementation of the construction safety knowledge scattered in standards poses a…

Abstract

Purpose

Safety management plays an important part in coal mine construction. Due to complex data, the implementation of the construction safety knowledge scattered in standards poses a challenge. This paper aims to develop a knowledge extraction model to automatically and efficiently extract domain knowledge from unstructured texts.

Design/methodology/approach

Bidirectional encoder representations from transformers (BERT)-bidirectional long short-term memory (BiLSTM)-conditional random field (CRF) method based on a pre-training language model was applied to carry out knowledge entity recognition in the field of coal mine construction safety in this paper. Firstly, 80 safety standards for coal mine construction were collected, sorted out and marked as a descriptive corpus. Then, the BERT pre-training language model was used to obtain dynamic word vectors. Finally, the BiLSTM-CRF model concluded the entity’s optimal tag sequence.

Findings

Accordingly, 11,933 entities and 2,051 relationships in the standard specifications texts of this paper were identified and a language model suitable for coal mine construction safety management was proposed. The experiments showed that F1 values were all above 60% in nine types of entities such as security management. F1 value of this model was more than 60% for entity extraction. The model identified and extracted entities more accurately than conventional methods.

Originality/value

This work completed the domain knowledge query and built a Q&A platform via entities and relationships identified by the standard specifications suitable for coal mines. This paper proposed a systematic framework for texts in coal mine construction safety to improve efficiency and accuracy of domain-specific entity extraction. In addition, the pretraining language model was also introduced into the coal mine construction safety to realize dynamic entity recognition, which provides technical support and theoretical reference for the optimization of safety management platforms.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 4 April 2019

Zhiyong Han, Qun Wang and Xiang Yan

The purpose of this paper is to investigate the mediating effect of felt obligation for constructive change on the relationship between responsible leadership and organizational…

1395

Abstract

Purpose

The purpose of this paper is to investigate the mediating effect of felt obligation for constructive change on the relationship between responsible leadership and organizational citizenship behavior for the environment (OCBE) in a China corporate environment, and this paper also analyze the moderated mediating effect of supervisor-subordinate guanxi on indirect relationship between responsible leadership and OCBE via felt obligation for constructive change.

Design/methodology/approach

This paper used 380 employee samples to analyze the relationship between responsible leadership and OCBE. Hierarchical regression analyses and structural equation modeling was adopted to analyze the data.

Findings

The authors found that the felt obligation for constructive change plays a fully mediating role between responsible leadership and OCBE. The authors also found a positive interaction between responsible leadership and supervisor-subordinate guanxi on felt obligation for constructive change, and then the indirect effect of responsible leadership on OCBE via felt obligation for constructive change was stronger when employees perceived a high-level supervisor-subordinate guanxi.

Research limitations/implications

When responsible leadership stimulates employees to generate a high sense of constructive change, employees are more likely to engage in OCBE. This study provides evidence for cognitive evaluation theory. This study further demonstrated the importance of establishing high-quality supervisor-subordinate guanxi for responsible leaders and subordinates in China.

Practical implications

In the management practice of the organization, the role of responsible leadership should be strengthened in terms of leadership development and, employee training and promotion, and high-quality supervisor-subordinate guanxi help to promote the effectiveness of responsible leadership.

Originality/value

This paper discusses how and when responsible leadership influences OCBE in a China corporate environment.

Details

Leadership & Organization Development Journal, vol. 40 no. 3
Type: Research Article
ISSN: 0143-7739

Keywords

Article
Publication date: 4 March 2022

Wang Jianhong

The purpose of this paper is to extend the authors’ previous contributions on aircraft flutter model parameters identification. Because closed-loop condition is more widely used…

Abstract

Purpose

The purpose of this paper is to extend the authors’ previous contributions on aircraft flutter model parameters identification. Because closed-loop condition is more widely used in today’s practice, a closed-loop stochastic model of the aircraft flutter test is constructed to model the aircraft flutter process, whose input–output signals are all corrupted by the observed noises. Through using a rational transfer function, the equivalent property between the aircraft flutter model parameters and polynomial coefficients is established, and then the problem of aircraft flutter model parameters identification is turned to one closed-loop identification problem. An iterative identification algorithm is proposed to identify the unknown polynomial coefficients, being benefit for the latter flutter model parameter identification. Furthermore, as the closed-loop output corresponds to the flutter amplitude, so from the point of the minimization with respect to the variance of the closed-loop output, the optimal input signal and optimal feedback controller are all derived to achieve the zero flutter, respectively, for example, the optimal input spectrum and the detailed form for optimal feedback controller.

Design/methodology/approach

First, model parameter identification for aircraft flutter is reviewed as one problem of parameter identification and this aircraft flutter model corresponds to one closed-loop stochastic model, whose input signal and output are corrupted by external noises. Second, for aircraft flutter closed-loop statistical model with statistical noise, an iterative identification algorithm is proposed to identify the unknown model parameters. Third, from the point of minimizing with respect to the variance of the closed-loop output, the optimal input signal and optimal feedback controller are all derived to achieve the zero flutter, respectively, for example, the optimal input spectrum and the detailed form for optimal feedback controller.

Findings

This aircraft flutter model corresponds to one closed-loop stochastic model, whose input signal and output are corrupted by external noises. Then, identification algorithm and optimal input signal design are studied for aircraft flutter model parameter identification with statistical noise, respectively. It means the optimal input signal and optimal feedback controller are useful for the aircraft flutter model parameter identification within the constructed new closed-loop stochastic model.

Originality/value

To the best of the authors’ knowledge, this problem of the model parameter identification for aircraft flutter is proposed by their previous work, and they proposed many identification strategies to identify these model parameters. This paper proposes a new closed-loop stochastic model to construct the aircraft flutter test, and some related topics are considered about this closed-loop identification for aircraft flutter model parameter identification in the framework of closed-loop condition.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 September 2023

Wang Jianhong and Guo Xiaoyong

This paper aims to extend the previous contributions about data-driven control in aircraft control system from academy and practice, respectively, combining iteration and learning…

Abstract

Purpose

This paper aims to extend the previous contributions about data-driven control in aircraft control system from academy and practice, respectively, combining iteration and learning strategy. More specifically, after returning output signal to input part, and getting one error signal, three kinds of data are measured to design the unknown controller without any information about the unknown plant. Using the main essence of data-driven control, iterative learning idea is introduced together to yield iterative learning data-driven control strategy. To get the optimal data-driven controller, other factors are considered, for example, adaptation, optimization and learning. After reviewing the aircraft control system in detail, the numerical simulation results have demonstrated the efficiency of the proposed iterative learning data-driven control strategy.

Design/methodology/approach

First, considering one closed loop system corresponding to the aircraft control system, data-driven control strategy is used to design the unknown controller without any message about the unknown plant. Second, iterative learning idea is combined with data-driven control to yield iterative learning data-driven control strategy. The optimal data-driven controller is designed by virtue of power spectrum and mathematical optimization. Furthermore, adaptation is tried to combine them together. Third, to achieve the combination with theory and practice, our proposed iterative learning data-driven control is applied into aircraft control system, so that the considered aircraft can fly more promptly.

Findings

A novel iterative learning data-driven strategy is proposed to efficiently achieve the combination with theory and practice. First, iterative learning and data-driven control are combined with each other, being dependent of adaptation and optimization. Second, iterative learning data-driven control is proposed to design the flight controller for the aircraft system. Generally, data-driven control is more wide in our living life, so it is important to introduce other fields to improve the performance of data-driven control.

Originality/value

To the best of the authors’ knowledge, this new paper extends the previous contributions about data-driven control by virtue of iterative learning strategy. Specifically, iteration means that the optimal data-driven controller is solved as one recursive form, being related with one gradient descent direction. This novel iterative learning data-driven control has more advanced properties, coming from data driven and adaptive iteration. Furthermore, it is a new subject on applying data-driven control into the aircraft control system.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 December 2022

Wang Jianhong and Ricardo A. Ramirez-Mendoza

This new paper aims to extend the authors’ previous contributions about open-loop aircraft flutter test to closed-loop aircraft flutter test by virtue of the proposed direct…

Abstract

Purpose

This new paper aims to extend the authors’ previous contributions about open-loop aircraft flutter test to closed-loop aircraft flutter test by virtue of the proposed direct data–driven strategy. After feeding back the output signal to the input and introducing one feedback controller in the adding feedback loop, two parts, i.e. unknown aircraft flutter model and unknown feedback controller, exist in this closed-loop aircraft flutter system, simultaneously, whose input and output are all corrupted with external noise. Because of the relations between aircraft flutter model parameters and the unknown aircraft model, direct data–driven identification is proposed to identify that aircraft flutter model, then some identification algorithms and their statistical analysis are given through the authors’ own derivations. As the feedback controller can suppress the aircraft flutter or guarantee the flutter response converge to one desired constant value, the direct data–driven control is applied to design that feedback controller only through the observed data sequence directly. Numerical simulation results have demonstrated the efficiency of the proposed direct data–driven strategy. Generally, during our new information age, direct data–driven strategy is widely applied around our living life.

Design/methodology/approach

First, consider one more complex closed loop stochastic aircraft flutter model, whose input–output are all corrupted with external noise. Second, for the identification problem of closed-loop aircraft flutter model parameters, new identification algorithm and some considerations are given to the corresponding direct data–driven identification. Third, to design that feedback controller, existing in that closed-loop aircraft flutter model, direct data–driven control is proposed to design the feedback controller, which suppresses the flutter response actively.

Findings

A novel direct data–driven strategy is proposed to achieve the dual missions, i.e. identification and control for closed-loop aircraft flutter test. First, direct data–driven identification is applied to identify that unknown aircraft flutter model being related with aircraft flutter model parameters identification. Second, direct data–driven control is proposed to design that feedback controller.

Originality/value

To the best of the authors’ knowledge, this new paper extends the authors’ previous contributions about open-loop aircraft flutter test to closed-loop aircraft flutter test by virtue of the proposed direct data–driven strategy. Consider the identification problem of aircraft flutter model parameters within the presented closed loop environment, direct data–driven identification algorithm is proposed to achieve the identification goal. Direct data–driven control is proposed to design the feedback controller, i.e. only using the observed data to design the feedback controller.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 March 2022

G. Vennira Selvi, V. Muthukumaran, A.C. Kaladevi, S. Satheesh Kumar and B. Swapna

In wireless sensor networks, improving the network lifetime is considered as the prime objective that needs to be significantly addressed during data aggregation. Among the…

Abstract

Purpose

In wireless sensor networks, improving the network lifetime is considered as the prime objective that needs to be significantly addressed during data aggregation. Among the traditional data aggregation techniques, cluster-based dominating set algorithms are identified as more effective in aggregating data through cluster heads. But, the existing cluster-based dominating set algorithms suffer from a major drawback of energy deficiency when a large number of communicating nodes need to collaborate for transferring the aggregated data. Further, due to this reason, the energy of each communicating node is gradually decreased and the network lifetime is also decreased. To increase the lifetime of the network, the proposed algorithm uses two sets: Dominating set and hit set.

Design/methodology/approach

The proposed algorithm uses two sets: Dominating set and hit set. The dominating set constructs an unequal clustering, and the hit set minimizes the number of communicating nodes by selecting the optimized cluster head for transferring the aggregated data to the base station. The simulation results also infer that the proposed optimized unequal clustering algorithm (OUCA) is greater in improving the network lifetime to a maximum amount of 22% than the existing cluster head selection approach considered for examination.

Findings

In this paper, lifetime of the network is prolonged by constructing an unequal cluster using the dominating set and electing an optimized cluster head using hit set. The dominator set chooses the dominator based on the remaining energy and its node degree of each node. The optimized cluster head is chosen by the hit set to minimize the number of communicating nodes in the network. The proposed algorithm effectively constructs the clusters with a minimum number of communicating nodes using the dominating and hit set. The simulation result confirms that the proposed algorithm prolonging the lifetime of the network efficiently when compared with the existing algorithms.

Originality/value

The proposed algorithm effectively constructs the clusters with a minimum number of communicating nodes using the dominating and hit sets. The simulation result confirms that the proposed algorithm is prolonging the lifetime of the network efficiently when compared with the existing algorithms.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 7 of 7