Search results

1 – 10 of 164
Article
Publication date: 1 May 1994

Marcel Lacroix and Antoine Joyeux

A numerical study has been conducted for natural convection heattransfer for air around two vertically separated horizontal heated cylindersplaced inside an isothermal rectangular…

Abstract

A numerical study has been conducted for natural convection heat transfer for air around two vertically separated horizontal heated cylinders placed inside an isothermal rectangular enclosure having finite wall conductances. The interaction between convection in the fluid filled cavity and conduction in the walls surrounding the cavity is investigated. Results have been obtained for Rayleigh numbers (Ra) between 103 and 106, dimensionless wall thickness (W) between 0.5 and 1.375 and dimensionless wall‐fluid thermal conductivity ratio (α) between 0.01 and 5.0. The results indicate that wall heat conduction reduces the average temperature differences across the cavity, partially stabilizes the flow, and decreases natural convection heat transfer. The overall heat transfer coefficient for both cylinders is correlated with CRan for different W and α.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 4 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1999

Lorraine G. Olson, George Gogos and Venkataramana Pasham

We present a new nonlinear axisymmetric finite element model for heat transfer and powder deposition in rotational molding. Arbitrary Lagrangian Eulerian techniques are employed…

Abstract

We present a new nonlinear axisymmetric finite element model for heat transfer and powder deposition in rotational molding. Arbitrary Lagrangian Eulerian techniques are employed to track the gradual growth of the plastic layer. Results using this approach compare well with earlier 1‐D models and with experimental data. Using the model to study the effects of locally enhanced heat transfer on part wall thickness, we find that controlling the relative magnitudes of radial and circumferential heat transfer is crucial in order to obtain desired wall thickness profiles.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 9 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 September 2002

Michele Ciofalo and Fabrizio Cricchio

The buoyancy‐driven magnetohydrodynamic flow in a cubic enclosure was investigated by three‐dimensional numerical simulation. The enclosure was volumetrically heated by a uniform…

Abstract

The buoyancy‐driven magnetohydrodynamic flow in a cubic enclosure was investigated by three‐dimensional numerical simulation. The enclosure was volumetrically heated by a uniform power density and cooled along two opposite vertical walls, all remaining walls being adiabatic. A uniform magnetic field was applied orthogonally to the gravity vector and to the temperature gradient. The Prandtl number was 0.0321 (characteristic of Pb–17Li at 300°C), the Rayleigh number was 104, and the Hartmann number was made to vary between 0 and 2×103. The steady‐state Navier–Stokes equations, in conjunction with a scalar transport equation for the fluid's enthalpy and with the Poisson equation for the electrical potential, were solved by a finite volume method using a purposely modified CFD code and a computational grid with 643 nodes in the fluid. Emphasis was laid on the effects of increasing the Hartmann number on the complex three‐dimensional flow and current pattern.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 October 1951

THE problem of the dissipation and transfer of heat is one that is becoming of increasing importance in aircraft with the introduction of gas‐turbines and jet propulsion as well…

Abstract

THE problem of the dissipation and transfer of heat is one that is becoming of increasing importance in aircraft with the introduction of gas‐turbines and jet propulsion as well as in view of the prospects of flight at high altitudes. We are therefore printing below summaries of all the papers read at the recent Anglo‐American conference on the subject, although some of them are not directly concerned with aeronautical applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 23 no. 10
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 27 July 2019

Fun Liang Chang and Yew Mun Hung

This paper aims to investigate the coupled effects of electrohydrodynamic and gravity forces on the circulation effectiveness of working fluid in an inclined micro heat pipe…

Abstract

Purpose

This paper aims to investigate the coupled effects of electrohydrodynamic and gravity forces on the circulation effectiveness of working fluid in an inclined micro heat pipe driven by electroosmotic flow. The effects of the three competing forces, namely, the capillary, the gravitational and the electrohydrodyanamic forces, on the circulation effectiveness of a micro heat pipe are compared and delineated.

Design/methodology/approach

The numerical model is developed based on the conservations of mass, momentum and energy with the incorporation of the Young–Laplace equation for electroosmotic flow in an inclined micro heat pipe incorporating the gravity effects.

Findings

By inducing electroosmotic flow in a micro heat pipe, a significant increase in heat transport capacity can be attained at a reasonably low applied voltage, leading to a small temperature drop and a high thermal conductance. However, the favorably applied gravity forces pull the liquid toward the evaporator section where the onset of flooding occurs within the condenser section, generating a throat that shrinks the vapor flow passage and may lead to a complete failure on the operation of micro heat pipe. Therefore, the balance between the electrohydrodyanamic and the gravitational forces is of vital importance.

Originality/value

This study provides a detailed insight into the gravitational and electroosmotic effects on the thermal performance of an inclined micro heat pipe driven by electroosmotic flow and paves the way for the feasible practical application of electrohydrodynamic forces in a micro-scale two-phase cooling device.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 September 2013

Osama M. Abuzeida and Nasim Alnumanb

– This work aims at constructing a continuous mathematical, linear elastic, model for the thermal contact conductance (TCC) of two rough surfaces in contact.

Abstract

Purpose

This work aims at constructing a continuous mathematical, linear elastic, model for the thermal contact conductance (TCC) of two rough surfaces in contact.

Design/methodology/approach

The rough surfaces, known to be physical fractal, are modelled using a deterministic Cantor structure. Such structure shows several levels of imperfections and including, therefore, several scales in the constriction of the flux lines. The proposed model will study the effect of the deformation (approach) of the two rough surfaces on the TCC as a function of the remotely applied load.

Findings

An asymptotic power law, derived using approximate iterative relations, is used to express the area of contact and, consequently, the thermal conductance as a function of the applied load. The model is valid only when the approach of the two surface in contact is of the order of the surface roughness. The results obtained using this model, which admits closed form solution, are displayed graphically for selected values of the system parameters; the fractal surface roughness and various material properties. The obtained results showed good agreement with published experimental results both in trend and the numerical values.

Originality/value

The model obtained provides further insight into the effect that surface texture has on the heat conductance process. The proposed model could be used to conduct an analytical investigation of the thermal conductance of rough surfaces in contact. This model, although simple (composed of springs), nevertheless works well.

Article
Publication date: 1 May 1993

M.R. BARONE and E. KOCK

A new method has been developed for determining the effect of flow on heat transfer in die casting during steady production. Aside from the assumption that the casting is thin in…

Abstract

A new method has been developed for determining the effect of flow on heat transfer in die casting during steady production. Aside from the assumption that the casting is thin in comparison with its overall size, there are no restrictions on either the die or casting geometry. Important questions concerning the nature and significance of heat transfer during flow are addressed by analysing a representative two‐dimensional die. The results show that the effect of flow can be critical when the fill time is long, the casting is thin, or the thermal conductance of the die lubricant is high.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 September 2018

Jyothiprakash K.H., Krishnegowda Y.T., Krishna Venkataram and K.N. Seetharamu

Heat exchangers working in cryogenic temperature ranges are strongly affected by heat ingression from the ambient. This paper aims to investigate the effect of ambient heat

Abstract

Purpose

Heat exchangers working in cryogenic temperature ranges are strongly affected by heat ingression from the ambient. This paper aims to investigate the effect of ambient heat-in-leak on the performance of a three-fluid cross-flow cryogenic heat exchanger.

Design/methodology/approach

The governing equations are derived for a three-fluid cross-flow cryogenic heat exchanger based on the conservation of energy principle. For given fluid inlet temperatures, the governing equations are solved using the finite element method to obtain exit temperatures of the three-fluid exchanger. The performance of the heat exchanger is determined using effectiveness-number of transfer units (e-NTU) method. In the present analysis, the amount of ambient heat-in-leak to the heat exchanger is accounted by two parameters Ht and Hb. The variation of the heat exchanger effectiveness due to ambient heat-in-leak is analyzed for various non-dimensional parameters defined to study the heat exchanger performance.

Findings

The effect of ambient heat in leak to the heat exchanger from the surrounding is to increase the dimensionless exit mean temperature of all three fluids. An increase in heat in leak parameter (Ht = Hb) value from 0 to 0.1 reduces hot fluid effectiveness by 32 per cent for an NTU value of 10.

Originality Value

The effect of heat-in-leak on a three-fluid cross-flow cryogenic heat exchanger is significant, but so far, no investigations are carried out. The results establish the efficacy of the method and throw light on important considerations involved in the design of such heat exchangers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 July 2017

Mohamed Rusthi, Poologanathan Keerthan, Mahen Mahendran and Anthony Ariyanayagam

This research was aimed at investigating the fire performance of LSF wall systems by using 3-D heat transfer FE models of existing LSF wall system configurations.

Abstract

Purpose

This research was aimed at investigating the fire performance of LSF wall systems by using 3-D heat transfer FE models of existing LSF wall system configurations.

Design/methodology/approach

This research was focused on investigating the fire performance of LSF wall systems by using 3-D heat transfer finite element models of existing LSF wall system configurations. The analysis results were validated by using the available fire test results of five different LSF wall configurations.

Findings

The validated finite element models were used to conduct a parametric study on a range of non-load bearing and load bearing LSF wall configurations to predict their fire resistance levels (FRLs) for varying load ratios.

Originality/value

Fire performance of LSF wall systems with different configurations can be understood by performing full-scale fire tests. However, these full-scale fire tests are time consuming, labour intensive and expensive. On the other hand, finite element analysis (FEA) provides a simple method of investigating the fire performance of LSF wall systems to understand their thermal-mechanical behaviour. Recent numerical research studies have focused on investigating the fire performances of LSF wall systems by using finite element (FE) models. Most of these FE models were developed based on 2-D FE platform capable of performing either heat transfer or structural analysis separately. Therefore, this paper presents the details of a 3-D FEA methodology to develop the capabilities to perform fully-coupled thermal-mechanical analyses of LSF walls exposed to fire in future.

Details

Journal of Structural Fire Engineering, vol. 8 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 2 October 2017

Zimeng Wang, Fabrice Colin, Guigao Le and Junfeng Zhang

The purpose of this paper is to develop a counter-extrapolation approach for computational heat and mass transfer with the interfacial discontinuity considered at conjugate…

123

Abstract

Purpose

The purpose of this paper is to develop a counter-extrapolation approach for computational heat and mass transfer with the interfacial discontinuity considered at conjugate interfaces.

Design/methodology/approach

By applying finite-difference approximations for the interfacial gradients along the local normal direction, the conjugate system can be simplified to the Dirichlet boundary problems for individual domains. A suitable method for the Dirichlet boundary value condition can then be used. The lattice Boltzmann method has been used to demonstrate the method. The model has been carefully validated by comparing the simulation results and theoretical solutions for steady and unsteady systems with flat or circular interfaces. Furthermore, the cooling process of a hot cylinder in a cold flow, which involves unsteady flow and heat transfer across a curved interface, has been simulated as an example to illustrate the practical usefulness of this model.

Findings

Good agreement has been observed in comparisons of simulations and theoretical solutions. The convergence and stability of the method have also been examined and satisfactory results have been obtained. Results of the cylinder cooling process show that a surface insulation layer can effectively reduce the heat transfer process and slow down the cooling process.

Originality/value

This method possesses several technical advantages, including the simple and straightforward algorithm, and accurate representation of the interface geometry. The basic idea and algorithm of the counter-extrapolation procedure presented here can be readily extended to other lattice Boltzmann models and even other computational technologies for heat and mass transfer systems with interface discontinuity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 164