Search results

1 – 10 of 877
Article
Publication date: 12 January 2024

Nasser Abdali, Saeideh Heidari, Mohammad Alipour-Vaezi, Fariborz Jolai and Amir Aghsami

Nowadays, in many organizations, products are not delivered instantly. So, the customers should wait to receive their needed products, which will form a queueing-inventory model…

Abstract

Purpose

Nowadays, in many organizations, products are not delivered instantly. So, the customers should wait to receive their needed products, which will form a queueing-inventory model. Waiting a long time in the queue to receive products may cause dissatisfaction and churn of loyal customers, which can be a significant loss for organizations. Although many studies have been done on queueing-inventory models, more practical models in this area are needed, such as considering customer prioritization. Moreover, in many models, minimizing the total cost for the organization has been overlooked.

Design/methodology/approach

This paper will compare several machine learning (ML) algorithms to prioritize customers. Moreover, benefiting from the best ML algorithm, customers will be categorized into different classes based on their value and importance. Finally, a mathematical model will be developed to determine the allocation policy of on-hand products to each group of customers through multi-channel service retailing to minimize the organization’s total costs and increase the loyal customers' satisfaction level.

Findings

To investigate the application of the proposed method, a real-life case study on vaccine distribution at Imam Khomeini Hospital in Tehran has been addressed to ensure model validation. The proposed model’s accuracy was assessed as excellent based on the results generated by the ML algorithms, problem modeling and case study.

Originality/value

Prioritizing customers based on their value with the help of ML algorithms and optimizing the waiting queues to reduce customers' waiting time based on a mathematical model could lead to an increase in satisfaction levels among loyal customers and prevent their churn. This study’s uniqueness lies in its focus on determining the policy in which customers receive products based on their value in the queue, which is a relatively rare topic of research in queueing management systems. Additionally, the results obtained from the study provide strong validation for the model’s functionality.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

171

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 11 April 2023

Qing Ye and Hong Wu

Waiting time, as an important predictor of queue abandonment and patient satisfaction, is important for resource utilization and patient experience management. Medical…

Abstract

Purpose

Waiting time, as an important predictor of queue abandonment and patient satisfaction, is important for resource utilization and patient experience management. Medical institutions have given top priority to reforming the appointment system for many years; however, whether the increased information transparency brought about by the appointment scheduling mechanism could improve patient waiting time is not well understood. In this study, the authors examine the effects of information transparency in reducing patient waiting time from an uncertainty perspective.

Design/methodology/approach

Leveraging a quasi-natural experiment in a tertiary academic hospital, the authors analyze over one million observational patient visit records and design the propensity score matching plus the difference in difference (PSM-DID) model and hierarchical linear modeling (HLM) to address this issue.

Findings

The authors confirm that, on average, improved information transparency significantly reduces the waiting time for patients by approximately 6.43 min, a 4.90% reduction. The authors identify three types of uncertainties (resource, process and outcome uncertainty) in the patient visit process that affect patients' waiting time. Moreover, information transparency moderates the relationship between three sources of uncertainties and waiting time.

Originality/value

The authors’ work not only provides important theoretical explanations for the patient-level factors of in-clinic waiting time and the reasons for information technology (IT)-enabled appointment scheduling by time slot (ITASS) to shorten patient waiting time and improve patient experience but also provides potential solutions for further exploration of measures to reduce patient waiting time.

Details

Internet Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1066-2243

Keywords

Article
Publication date: 1 September 2023

Diego Augusto de Jesus Pacheco and Thomas Schougaard

This study aims to investigate how to identify and address production levelling problems in assembly lines utilising an intensive manual workforce when higher productivity levels…

Abstract

Purpose

This study aims to investigate how to identify and address production levelling problems in assembly lines utilising an intensive manual workforce when higher productivity levels are urgently requested to meet market demands.

Design/methodology/approach

A mixed-methods approach was used in the research design, integrating case study analysis, interviews and qualitative/quantitative data collection and analysis. The methodology implemented also introduces to the literature on operational performance a novel combination of data analysis methods by introducing the use of the Natural Language Understanding (NLU) methods.

Findings

First, the findings unveil the impacts on operational performance that transportation, limited documentation and waiting times play in assembly lines composed of an intensive workforce. Second, the paper unveils the understanding of the role that a limited understanding of how the assembly line functions play in productivity. Finally, the authors provide actionable insights into the levelling problems in manual assembly lines.

Practical implications

This research supports industries operating assembly lines with intensive utilisation of manual workforce to improve operational performance. The paper also proposed a novel conceptual model prescriptively guiding quick and long-term improvements in intensive manual workforce assembly lines. The article assists industrial decision-makers with subsequent turnaround strategies to ensure higher efficiency levels requested by the market.

Originality/value

The paper offers actionable findings relevant to other manual assembly lines utilising an intensive workforce looking to improve operational performance. Some of the methods and strategies examined in this study to improve productivity require minimal capital investments. Lastly, the study contributes to the empirical literature by identifying production levelling problems in a real context.

Details

International Journal of Productivity and Performance Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 11 January 2024

Marco Fabio Benaglia, Mei-Hui Chen, Shih-Hao Lu, Kune-Muh Tsai and Shih-Han Hung

This research investigates how to optimize storage location assignment to decrease the order picking time and the waiting time of orders in the staging area of low-temperature…

189

Abstract

Purpose

This research investigates how to optimize storage location assignment to decrease the order picking time and the waiting time of orders in the staging area of low-temperature logistics centers, with the goal of reducing food loss caused by temperature abuse.

Design/methodology/approach

The authors applied ABC clustering to the products in a simulated database of historical orders modeled after the actual order pattern of a large cold logistics company; then, the authors mined the association rules and calculated the sales volume correlation indices of the ordered products. Finally, the authors generated three different simulated order databases to compare order picking time and waiting time of orders in the staging area under eight different storage location assignment strategies.

Findings

All the eight proposed storage location assignment strategies significantly improve the order picking time (by up to 8%) and the waiting time of orders in the staging area (by up to 22%) compared with random placement.

Research limitations/implications

The results of this research are based on a case study and simulated data, which implies that, if the best performing strategies are applied to different environments, the extent of the improvements may vary. Additionally, the authors only considered specific settings in terms of order picker routing, zoning and batching: other settings may lead to different results.

Practical implications

A storage location assignment strategy that adopts dispersion and takes into consideration ABC clustering and shipping frequency provides the best performance in minimizing order picker's travel distance, order picking time, and waiting time of orders in the staging area. Other strategies may be a better fit if the company's objectives differ.

Originality/value

Previous research on optimal storage location assignment rarely considered item association rules based on sales volume correlation. This study combines such rules with several storage planning strategies, ABC clustering, and two warehouse layouts; then, it evaluates their performance compared to the random placement, to find which one minimizes the order picking time and the order waiting time in the staging area, with a 30-min time limit to preserve the integrity of the cold chain. Order picking under these conditions was rarely studied before, because they may be irrelevant when dealing with temperature-insensitive items but become critical in cold warehouses to prevent temperature abuse.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 13 June 2023

Diana Salhab, Søren Munch Lindhard and Farook Hamzeh

Compressing the schedule by using overlapping activities is a commonly adopted approach for accelerating projects. However, this approach might channel a variety of risks into the…

Abstract

Purpose

Compressing the schedule by using overlapping activities is a commonly adopted approach for accelerating projects. However, this approach might channel a variety of risks into the construction processes. Risks imply waste; still, evaluating the effects of using overlapping activities on schedule quality has been a looming gap in construction research. Therefore, this paper aims to study the quality of overlapping in terms of emerging waste and to demarcate the boundaries of the overlapping envelope.

Design/methodology/approach

This study presents a method for assessing the consequences of implementing overlapping activities in a schedule on two types of waste namely waiting time and variation gap. A critical path method (CPM) network including eleven activities is modeled stochastically where the durations of individual activities are sampled as beta-distributions. Using program evaluation and review technique (PERT) assumptions to calculate the schedule dates, the network is simulated for various amounts of overlapping and the corresponding waste is quantified each time.

Findings

Results show that not only the returns on overlapping are diminishing after a certain overlap percentage, but also waste in the production system increases. Particularly, results reveal that compressing the schedule leads to a decrease in variation gaps, but at the same time, it leads to a larger increase in waiting times, which creates more waste.

Originality/value

The presented study shows through simulation how overlapping activities affects productivity by identifying wastes. It shows that despite the apparent gains, overlaps should be used with caution, and while considering the side-effects of increased waste which introduces a need for increased managerial awareness.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 12 December 2023

M.S. Narassima, V. Aashrith, C. Aldo Ronald, S.P. Anbuudayasankar and M. Thenarasu

The textile industry contributes 2 and 3% to the global and Indian Gross Domestic Product (GDP), respectively. India supplies a quarter of global cotton yarn. Yet, most yarn…

Abstract

Purpose

The textile industry contributes 2 and 3% to the global and Indian Gross Domestic Product (GDP), respectively. India supplies a quarter of global cotton yarn. Yet, most yarn manufacturing companies use outdated methods and lack organisational skills and strategies. Improvement in processes in India could significantly help the industry worldwide.

Design/methodology/approach

The variables that influence the performance of the system were identified. Their interrelationships and impact were identified from the employees in the chosen case study, a yarn manufacturing industry. A System Dynamics (SD) approach was employed to study the benefits of implementing 5S lean strategies. The impact of each variable on various performance measures such as throughput, Work In Progress, processing time, waiting time, idle time, over-processing and scraps was analysed.

Findings

Improvement in outcomes reflected an enhanced adoption of leanness in the industry. The decision-makers can utilise this study to optimise the necessary parameters in the system and attain the desired productivity levels. Better resource management and reduced processing time helped increase the despatch rate by 9.735% and decrease the WIP by 23.01%. Time management helped to reduce the inventory, idle time and waiting time. Over-processing, defects and scraps were minimised, indicating a shift towards lean.

Research limitations/implications

This study pioneers the use of SD simulation models for optimising yarn manufacturing using lean strategies. Improvement in performance measures by integrating these strategies opens avenues for future research using multiple approaches to address a problem.

Practical implications

Implementing 5S lean principles and simulations enhances productivity, reduces waste and optimises resource management for the yarn manufacturing industry. Decision-makers can employ simulation to witness the outcomes of their changes without investing cost and time and without associated implementation risks.

Originality/value

The use of a simulation model to witness the benefits of incorporating lean strategies in yarn production has not been explored. This approach could help the managers and policymakers understand their existing system's shortcomings and critical areas that require improvement.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 11 January 2024

Maria Luiza de Souza Morato and Karine Araujo Ferreira

The pupose of this study is to systematically review the current literature on the value stream mapping (VSM) application in the construction industry to investigate the evolution…

Abstract

Purpose

The pupose of this study is to systematically review the current literature on the value stream mapping (VSM) application in the construction industry to investigate the evolution observed over time and the results obtained by adopting this tool. In addition, special attention was given to the potential of VSM in identifying loss and waste, as well as their main causes.

Design/methodology/approach

The study analyses papers in literature using Preferred Reporting Items for Systematic Reviews and Meta-Analyses research protocol. As a result, 383 papers were initially identified, and 47 papers were selected.

Findings

It was observed that the number of studies addressing this topic has been increasing over the past decade and findings related to the evolution, application and the benefits obtained from the VSM application in context of construction were presented. Additionally, the authors found that the two most cited lean wastes were waiting and defects in the production chain. The main causes of this waste and loss were also identified in this work.

Practical implications

This paper contributes by presenting the applicability of VSM as a tool in the construction as found in the literature. For academics, it will be possible to clearly observe research gaps and for industry managers, to identify the main sources of waste and assess the performance of the tool’s application.

Originality/value

The study uses a systematic review to analyze the application of the VSM tool in the construction industry and provides guidance for future research by identifying research gaps, in addition to conducting an extensive analysis of the tool’s potential in waste identification in the studied papers and their primary causes.

Details

International Journal of Lean Six Sigma, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 29 May 2023

Vu Hong Son Pham, Nguyen Thi Nha Trang and Chau Quang Dat

The paper aims to provide an efficient dispatching schedule for ready-mix concrete (RMC) trucks and create a balance between batch plants and construction sites.

Abstract

Purpose

The paper aims to provide an efficient dispatching schedule for ready-mix concrete (RMC) trucks and create a balance between batch plants and construction sites.

Design/methodology/approach

The paper focused on developing a new metaheuristic swarm intelligence algorithm using Java code. The paper used statistical criterion: mean, standard deviation, running time to verify the effectiveness of the proposed optimization method and compared its derivatives with other algorithms, such as genetic algorithm (GA), Tabu search (TS), bee colony optimization (BCO), ant lion optimizer (ALO), grey wolf optimizer (GWO), dragonfly algorithm (DA) and particle swarm optimization (PSO).

Findings

The paper proved that integrating GWO and DA yields better results than independent algorithms and some selected algorithms in the literature. It also suggests that multi-independent batch plants could effectively cooperate in a system to deliver RMC to various construction sites.

Originality/value

The paper provides a compelling new hybrid swarm intelligence algorithm and a model allowing multi-independent batch plants to work in a system to deliver RMC. It fulfills an identified need to study how batch plant managers can expand their dispatching network, increase their competitiveness and improve their supply chain operations.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 22 June 2022

Suvarna Abhijit Patil and Prasad Kishor Gokhale

With the advent of AI-federated technologies, it is feasible to perform complex tasks in industrial Internet of Things (IIoT) environment by enhancing throughput of the network…

Abstract

Purpose

With the advent of AI-federated technologies, it is feasible to perform complex tasks in industrial Internet of Things (IIoT) environment by enhancing throughput of the network and by reducing the latency of transmitted data. The communications in IIoT and Industry 4.0 requires handshaking of multiple technologies for supporting heterogeneous networks and diverse protocols. IIoT applications may gather and analyse sensor data, allowing operators to monitor and manage production systems, resulting in considerable performance gains in automated processes. All IIoT applications are responsible for generating a vast set of data based on diverse characteristics. To obtain an optimum throughput in an IIoT environment requires efficiently processing of IIoT applications over communication channels. Because computing resources in the IIoT are limited, equitable resource allocation with the least amount of delay is the need of the IIoT applications. Although some existing scheduling strategies address delay concerns, faster transmission of data and optimal throughput should also be addressed along with the handling of transmission delay. Hence, this study aims to focus on a fair mechanism to handle throughput, transmission delay and faster transmission of data. The proposed work provides a link-scheduling algorithm termed as delay-aware resource allocation that allocates computing resources to computational-sensitive tasks by reducing overall latency and by increasing the overall throughput of the network. First of all, a multi-hop delay model is developed with multistep delay prediction using AI-federated neural network long–short-term memory (LSTM), which serves as a foundation for future design. Then, link-scheduling algorithm is designed for data routing in an efficient manner. The extensive experimental results reveal that the average end-to-end delay by considering processing, propagation, queueing and transmission delays is minimized with the proposed strategy. Experiments show that advances in machine learning have led to developing a smart, collaborative link scheduling algorithm for fairness-driven resource allocation with minimal delay and optimal throughput. The prediction performance of AI-federated LSTM is compared with the existing approaches and it outperforms over other techniques by achieving 98.2% accuracy.

Design/methodology/approach

With an increase of IoT devices, the demand for more IoT gateways has increased, which increases the cost of network infrastructure. As a result, the proposed system uses low-cost intermediate gateways in this study. Each gateway may use a different communication technology for data transmission within an IoT network. As a result, gateways are heterogeneous, with hardware support limited to the technologies associated with the wireless sensor networks. Data communication fairness at each gateway is achieved in an IoT network by considering dynamic IoT traffic and link-scheduling problems to achieve effective resource allocation in an IoT network. The two-phased solution is provided to solve these problems for improved data communication in heterogeneous networks achieving fairness. In the first phase, traffic is predicted using the LSTM network model to predict the dynamic traffic. In the second phase, efficient link selection per technology and link scheduling are achieved based on predicted load, the distance between gateways, link capacity and time required as per different technologies supported such as Bluetooth, Wi-Fi and Zigbee. It enhances data transmission fairness for all gateways, resulting in more data transmission achieving maximum throughput. Our proposed approach outperforms by achieving maximum network throughput, and less packet delay is demonstrated using simulation.

Findings

Our proposed approach outperforms by achieving maximum network throughput, and less packet delay is demonstrated using simulation. It also shows that AI- and IoT-federated devices can communicate seamlessly over IoT networks in Industry 4.0.

Originality/value

The concept is a part of the original research work and can be adopted by Industry 4.0 for easy and seamless connectivity of AI and IoT-federated devices.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of 877