Search results

1 – 3 of 3
Article
Publication date: 1 July 2014

Wael M. El-Medany, Alauddin Al-Omary, Riyadh Al-Hakim and Mustafa Nusaif

The purpose of this paper is to present a development to the hardware and software of a real-time tracking system that provides the position of the tracked vehicle accurately…

Abstract

Purpose

The purpose of this paper is to present a development to the hardware and software of a real-time tracking system that provides the position of the tracked vehicle accurately using fairly low-cost equipment and services. Vehicle tracking industries are expanding as businesses are interested to know their fleet vehicles positions minute by minute every day. Many systems were proposed recently that can provide such information.

Design/methodology/approach

The system is implemented using GM862 cellular quad band module. A monitoring server and a graphical user interface on a Web site have also been implemented to view the current location of a vehicle on a specific map.

Findings

The experiments were conducted and tested in different areas of the Kingdom Of Bahrain using Google maps, and results are discussed.

Originality/value

The developed system has been compared to the available and imported tracking systems to some of the telematics companies in Bahrain, and the comparison has been discussed.

Details

Journal of Engineering, Design and Technology, vol. 12 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 29 April 2014

Wael M. El-Medany

With the rapid development in wired and wireless networks, the demand for network security system is rising rapidly due to more and more new applications introduced. The main…

Abstract

Purpose

With the rapid development in wired and wireless networks, the demand for network security system is rising rapidly due to more and more new applications introduced. The main factors that rate the encryption algorithms are its ability to secure and protect data against attacks, its speed and efficiency. In this paper, a reconfigurable network security design using multi-mode data encryption standard (DES) algorithm has been implemented with low complexity and low cost, which will also reduce the speed. The paper aims to discuss these issues.

Design/methodology/approach

The design can be easily reconfigured to 3DES (triple DES) which is more secure and more powerful in encryption and decryption, as one of the trick in designing 3DES is to reuse three instances of DES. The design can be used for wired and wireless network applications, and it has been described using VHDL and implemented in a reconfigurable Programmable System-on-Chip (PSoC). The hardware implementation has targeted Xilinx Spartan XC3S700-AN FPGA device.

Findings

The main idea of reducing the complexity for the hardware implementation is by optimizing the number of logic gates and LUTs of the design. The number of logic gates can be decreased by changing the way of writing the VHDL code and by optimizing the size of the chip.

Originality/value

The design has been tested in simulation and hardware levels, and the simulation results and performance are discussed.

Details

Journal of Engineering, Design and Technology, vol. 12 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 28 December 2021

Abdulla Alateeq, Wael Elmedany, Nedal Ababneh and Kevin Curran

The purpose of this paper is to investigate the latest research related to secure routing protocols in Wireless Sensor Network (WSN) and propose a new approach that can achieve a…

Abstract

Purpose

The purpose of this paper is to investigate the latest research related to secure routing protocols in Wireless Sensor Network (WSN) and propose a new approach that can achieve a higher security level compared to the existing one. One of the main security issues in WSNs is the security of routing protocols. A typical WSN consists of a large number of small size, low-power, low-cost sensor devices. These devices are very resource-constrained and usually use cheap short-range radios to communicate with each other in an ad hoc fashion thus, achieving security in these networks is a big challenge, which is open for research.

Design/methodology/approach

The route updates and data messages of the protocol are authenticated using Edwards-curves Digital Signature Algorithm (EdDSA). Routing protocols play an essential role in WSNs, they ensure the delivery of the sensed data from the remote sensor nodes to back-end systems via a data sink. Routing protocols depend on route updates received from neighboring nodes to determine the best path to the sink. Manipulating these updates by inserting rouge nodes in the network that advertise false updates can lead to a catastrophic impact on the compromised WSN performance.

Findings

As a result, a new secure energy-aware routing protocol (SEARP) is proposed, which uses security enhanced clustering algorithm and EdDSA to authenticate route advertisements and messages. A secure clustering algorithm is also used as part of the proposed protocol to conserve energy, prolong network lifetime and counteract wormhole attacks.

Originality/value

In this paper, a SEARP is proposed to address network layer security attacks in WSNs. A secure clustering algorithm is also used as part of the proposed protocol to conserve energy, prolong network lifetime and counteract wormhole attacks. A simulation has been carried out using Sensoria Simulator and the performance evaluation has been discussed.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Access

Year

Content type

Article (3)
1 – 3 of 3