Search results

1 – 2 of 2
Article
Publication date: 2 March 2020

Yan Liang, Feng Zhao, Dong-Jin Yoo and Bing Zheng

The purpose of this paper is to describe a novel design method to construct lattice structure computational models composed of a set of unit cells including simple cubic…

Abstract

Purpose

The purpose of this paper is to describe a novel design method to construct lattice structure computational models composed of a set of unit cells including simple cubic, body-centered cubic, face-centered cubic, diamond cubic and octet cubic unit cell.

Design/methodology/approach

In this paper, the authors introduce a new implicit design algorithm based on the computation of volumetric distance field (VDF). All the geometric components including lattice core structure and outer skin are represented with VDFs in a given design domain. This enables computationally efficient design of a computational model for an arbitrarily complex lattice structure. In addition, the authors propose a hybrid method based on the VDF and parametric solid models to construct a conformal lattice structure, which is oriented in accordance with the geometric form of the exterior surface. This method enables the authors to design highly complex lattice structure, computational models, in a consistent design framework irrespective of the complexity in geometric representations without sacrificing accuracy and efficiency.

Findings

Experimental results are shown for a variety of geometries to validate the proposed design method along with illustrative several lattice structure prototypes built by additive manufacturing techniques.

Originality/value

This method enables the authors to design highly complex lattice structure, computational models, in a consistent design framework irrespective of the complexity in geometric representations without sacrificing accuracy and efficiency.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 November 2016

Ismail Abd-Elaty, Hany Farhat Abd Elhamid and Akbar Javadi

The purpose of this paper is to develop and validate a numerical model to study the effect of changing hydraulic parameters on saltwater intrusion in coastal aquifers.

Abstract

Purpose

The purpose of this paper is to develop and validate a numerical model to study the effect of changing hydraulic parameters on saltwater intrusion in coastal aquifers.

Design/methodology/approach

The numerical model SEAWAT is validated and applied to a hypothetical case (Henry problem) and a real case study (Biscayne aquifer, Florida, USA) for different values of hydraulic parameters including; hydraulic conductivity, porosity, dispersion, diffusion, fluid density and solute concentration. The dimensional analysis technique is used to correlate these parameters with the intrusion length.

Findings

The results show that the hydraulic parameters have a clear effect on saltwater intrusion as they increase the intrusion in some cases and decrease it in some other cases. The results indicate that changing hydraulic parameters may be used as a control method to protect coastal aquifers from saltwater intrusion.

Practical implications

The results of the application of the model to the Biscayne aquifer in Florida showed that the intrusion can be reduced to 50 percent when the hydraulic conductivity is reduced to 50 percent. Decreasing hydraulic conductivity by injecting some relatively cheap materials such as bentonite can help to reduce the intrusion of saltwater. So the saltwater intrusion can be reduced with relatively low cost through changing some hydraulic parameters.

Originality/value

A relationship to calculate intrusion length in coastal aquifer is developed and the impact of different hydraulic parameters on saltwater intrusion is highlighted. Control of saltwater intrusion using relatively cheap method is presented.

Details

Engineering Computations, vol. 33 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 2 of 2