Search results

1 – 10 of over 12000
Article
Publication date: 10 April 2019

Yazid Statra, Hocine Menana, Lamia Belguerras and Bruno Douine

The purpose of this paper is to develop a rapid and realistic modelling approach for the design and characterization of high temperature superconducting (HTS) coils and windings…

Abstract

Purpose

The purpose of this paper is to develop a rapid and realistic modelling approach for the design and characterization of high temperature superconducting (HTS) coils and windings carrying DC currents. Indeed, the strong dependence of the electromagnetic properties of such materials on the magnetic field makes the design and characterization of HTS systems a delicate operation where local quantities have to be evaluated.

Design/methodology/approach

A volume integral modelling approach has been developed taking into account the electric nonlinearity of the HTS material which is represented by power law. The variations of the characteristic quantities of the HTS (critical current density and power law exponent) with the magnetic flux density are also taken into account by using Kim’s law. The volume integral modelling allows to model only the active parts of the system and thus to overcome the difficulties linked to the multiscale dimensions.

Findings

The model has been tested in a case study in which simulation results were compared to measurements and to finite element analysis. A good agreement was found which validates the model as a rapid and efficient tool for HTS coils and windings design and modelling.

Practical implications

HTS coils are important elements of emerging superconducting devices which require a high level of reliability, such as generators or motors. The proposed approach is interesting to speed up the design and optimization procedures of such systems.

Originality/value

Advanced structures of the basic elements have been used in the volume integral modelling, which results in a considerable gain in computation time and in memory-space saving while keeping a high level of precision and realism of the modelling, which has been verified experimentally.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 May 2020

Gerard Meunier, Quang-Anh Phan, Olivier Chadebec, Jean-Michel Guichon, Bertrand Bannwarth and Riccardo Torchio

This paper aims to study unstructured-partial element equivalent circuit (PEEC) method for modelling electromagnetic regions with surface impedance condition (SIBC) is proposed…

Abstract

Purpose

This paper aims to study unstructured-partial element equivalent circuit (PEEC) method for modelling electromagnetic regions with surface impedance condition (SIBC) is proposed. Two coupled circuits representations are used for solving both electric and/or magnetic effects in thin regions discretized by a finite element surface mesh. The formulation is applied in the context of low frequency problems with volumic magnetic media and coils. Non simply connected regions are treated with fundamental branch independent loop matrices coming from the circuit representation.

Design/methodology/approach

Because of the use of Whitney face elements, two coupled circuits representations are used for solving both electric and/or magnetic effects in thin regions discretized by a finite element surface mesh. The air is not meshed.

Findings

The new surface impedance formulation enables the modeling of volume conductive regions to efficiently simulate various devices with only a surface mesh.

Research limitations/implications

The propagation effects are not taken into account in the proposed formulation.

Originality/value

The formulation is original and is efficient for modeling non simply connected conductive regions with the use of SIBC. The unstructured PEEC SIBC formulation has been validated in presence of volume magnetic nonconductive region and compared with a SIBC FEM approach. The computational effort is considerably reduced in comparison with volume approaches.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 August 2017

Qiao Wang, Wei Zhou, Yonggang Cheng, Gang Ma and Xiaolin Chang

Domain integrals, known as volume potentials in 3D elasticity problems, exist in many boundary-type methods, such as the boundary element method (BEM) for inhomogeneous partial…

Abstract

Purpose

Domain integrals, known as volume potentials in 3D elasticity problems, exist in many boundary-type methods, such as the boundary element method (BEM) for inhomogeneous partial differential equations. The purpose of this paper is to develop an accurate and reliable technique to effectively evaluate the volume potentials in 3D elasticity problems.

Design/methodology/approach

An adaptive background cell-based domain integration method is proposed for treatment of volume potentials in 3D elasticity problems. The background cells are constructed from the information of the boundary elements based on an oct-tree structure, and the domain integrals are evaluated over the cells rather than volume elements. The cells that contain the boundary elements can be subdivided into smaller sub-cells adaptively according to the sizes and levels of the boundary elements. The fast multipole method (FMM) is further applied in the proposed method to reduce the time complexity of large-scale computation.

Findings

The method is a boundary-only discretization method, and it can be applied in the BEM easily. Much computational time is saved by coupling with the FMM. Numerical examples demonstrate the accuracy and efficiency of the proposed method..

Originality/value

Boundary elements are used to create adaptive background cells, and domain integrals are evaluated over the cells rather than volume elements. Large-scale computation is made possible by coupling with the FMM.

Details

Engineering Computations, vol. 34 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2002

E. Theuns, J. Vierendeels and P. Vandevelde

This paper describes a one dimensional moving grid model for the pyrolysis of charring materials. In the model, the solid is divided by a pyrolysis front into a char and a virgin…

Abstract

This paper describes a one dimensional moving grid model for the pyrolysis of charring materials. In the model, the solid is divided by a pyrolysis front into a char and a virgin layer. Only when the virgin material reaches a critical temperature it starts to pyrolyse. The progress of the front determines the release of combustible volatiles by the surface. The volatiles, which are produced at the pyrolysis front, flow immediately out of the solid. Heat exchange between those volatiles and the char layer is taken into account. Since the model is used here as a stand‐alone model, the external heat flux that heats up the solid, is assumed to be known. In the future, this model will be coupled with a CFD code in order to simulate fire spread. The char and virgin grid move along with the pyrolysis front. Calculations are done on uniform and on non‐uniform grids for the virgin layer. In the char layer only a uniform grid is used. Calculations done with a non‐uniform grid are about 3 times faster than with a uniform gird. The moving grid model is compared with a faster but approximate integral model for several cases. For sudden changes in the boundary conditions, the approximate integral model gives significant errors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1999

Bozidar Sarler and Jure Mencinger

The axisymmetric steady‐state convective‐diffusive thermal field problem associated with direct‐chill, semi‐continuously cast billets has been solved using the dual reciprocity…

Abstract

The axisymmetric steady‐state convective‐diffusive thermal field problem associated with direct‐chill, semi‐continuously cast billets has been solved using the dual reciprocity boundary element method. The solution is based on a formulation which incorporates the one‐phase physical model, Laplace equation fundamental solution weighting, and scaled augmented thin plate splines for transforming the domain integrals into a finite series of boundary integrals. Realistic non‐linear boundary conditions and temperature variation of all material properties are included. The solution is verified by comparison with the results of the classical finite volume method. Results for a 0.500[m] diameter Al 4.5 per cent Cu alloy billet at typical casting conditions are given.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 9 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2003

Georgios I. Zekos

Aim of the present monograph is the economic analysis of the role of MNEs regarding globalisation and digital economy and in parallel there is a reference and examination of some…

88270

Abstract

Aim of the present monograph is the economic analysis of the role of MNEs regarding globalisation and digital economy and in parallel there is a reference and examination of some legal aspects concerning MNEs, cyberspace and e‐commerce as the means of expression of the digital economy. The whole effort of the author is focused on the examination of various aspects of MNEs and their impact upon globalisation and vice versa and how and if we are moving towards a global digital economy.

Details

Managerial Law, vol. 45 no. 1/2
Type: Research Article
ISSN: 0309-0558

Keywords

Article
Publication date: 5 March 2018

Jungki Lee and Hogwan Jeong

The purpose of this paper is to calculate near field and far field scattering of SH waves by multiple multilayered anisotropic circular inclusions using parallel volume integral…

Abstract

Purpose

The purpose of this paper is to calculate near field and far field scattering of SH waves by multiple multilayered anisotropic circular inclusions using parallel volume integral equation method (PVIEM) quantitatively.

Design/methodology/approach

The PVIEM is applied for the analysis of elastic wave scattering problems in an unbounded solid containing multiple multilayered anisotropic circular inclusions. It should be noted that this numerical method does not require the use of the Green’s function for the inclusion – only the Green’s function for the unbounded isotropic matrix is needed. This method can also be applied to solve general elastodynamic problems involving inhomogeneous and/or anisotropic inclusions whose shape and number are arbitrary.

Findings

A detailed analysis of the SH wave scattering problem is presented for multiple multilayered orthotropic circular inclusions. Numerical results are presented for the displacement fields at the interfaces and the far field scattering patterns for square and hexagonal packing arrays of multilayered circular inclusions in a broad frequency range of practical interest.

Originality/value

To the best of the authors’ knowledge, the solution for scattering of SH waves by multiple multilayered anisotropic circular inclusions in an unbounded isotropic matrix is not currently available in the literature. However, in this paper, calculation of displacements on interfaces and far field scattering patterns of multiple multilayered anisotropic circular inclusions using PVIEM as a pioneer of numerical modeling enables us to investigate the effects of single/multiple scattering, fiber packing type, fiber volume fraction, single/multiple layer(s), the multilayer’s geometry, isotropy/anisotropy and softness/hardness.

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1128

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 August 2023

Biao Liu, Qiao Wang, Y.T. Feng, Zongliang Zhang, Quanshui Huang, Wenxiang Tian and Wei Zhou

3D steady heat conduction analysis considering heat source is conducted on the fundamental of the fast multipole method (FMM)-accelerated line integration boundary element method…

Abstract

Purpose

3D steady heat conduction analysis considering heat source is conducted on the fundamental of the fast multipole method (FMM)-accelerated line integration boundary element method (LIBEM).

Design/methodology/approach

Due to considering the heat source, domain integral is generated in the traditional heat conduction boundary integral equation (BIE), which will counteract the well-known merit of the BEM, namely, boundary-only discretization. To avoid volume discretization, the enhanced BEM, the LIBEM with dimension reduction property is introduced to transfer the domain integral into line integrals. Besides, owing to the unsatisfactory performance of the LIBEM when it comes to large-scale structures requiring massive computation, the FMM-accelerated LIBEM (FM-LIBEM) is proposed to improve the computation efficiency further.

Findings

Assuming N and M are the numbers of nodes and integral lines, respectively, the FM-LIBEM can reduce the time complexity from O(NM) to about O(N+ M), and a full discussion and verification of the advantage are done based on numerical examples under heat conduction.

Originality/value

(1) The LIBEM is applied to 3D heat conduction analysis with heat source. (2) The domain integrals can be transformed into boundary integrals with straight line integrals by the LIM. (3) A FM-LIBEM is proposed and can reduce the time complexity from O(NM) to O(N+ M). (4) The FM-LIBEM with high computational efficiency is exerted to solve 3D heat conduction analysis with heat source in massive computation successfully.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 24 August 2011

Morten H. Abrahamsen

The study here examines how business actors adapt to changes in networks by analyzing their perceptions or their network pictures. The study is exploratory or iterative in the…

Abstract

The study here examines how business actors adapt to changes in networks by analyzing their perceptions or their network pictures. The study is exploratory or iterative in the sense that revisions occur to the research question, method, theory, and context as an integral part of the research process.

Changes within networks receive less research attention, although considerable research exists on explaining business network structures in different research traditions. This study analyzes changes in networks in terms of the industrial network approach. This approach sees networks as connected relationships between actors, where interdependent companies interact based on their sensemaking of their relevant network environment. The study develops a concept of network change as well as an operationalization for comparing perceptions of change, where the study introduces a template model of dottograms to systematically analyze differences in perceptions. The study then applies the model to analyze findings from a case study of Norwegian/Japanese seafood distribution, and the chapter provides a rich description of a complex system facing considerable pressure to change. In-depth personal interviews and cognitive mapping techniques are the main research tools applied, in addition to tracer studies and personal observation.

The dottogram method represents a valuable contribution to case study research as it enables systematic within-case and across-case analyses. A further theoretical contribution of the study is the suggestion that network change is about actors seeking to change their network position to gain access to resources. Thereby, the study also implies a close relationship between the concepts network position and the network change that has not been discussed within the network approach in great detail.

Another major contribution of the study is the analysis of the role that network pictures play in actors' efforts to change their network position. The study develops seven propositions in an attempt to describe the role of network pictures in network change. So far, the relevant literature discusses network pictures mainly as a theoretical concept. Finally, the chapter concludes with important implications for management practice.

Details

Interfirm Networks: Theory, Strategy, and Behavior
Type: Book
ISBN: 978-1-78052-024-7

Keywords

1 – 10 of over 12000