Search results

1 – 10 of 465
Open Access
Article
Publication date: 25 July 2022

Cara Greta Kolb, Maja Lehmann, Johannes Kriegler, Jana-Lorena Lindemann, Andreas Bachmann and Michael Friedrich Zaeh

This paper aims to present a requirements analysis for the processing of water-based electrode dispersions in inkjet printing.

927

Abstract

Purpose

This paper aims to present a requirements analysis for the processing of water-based electrode dispersions in inkjet printing.

Design/methodology/approach

A detailed examination of the components and the associated properties of the electrode dispersions has been carried out. The requirements of the printing process and the resulting performance characteristics of the electrode dispersions were analyzed in a top–down approach. The product and process side were compared, and the target specifications of the dispersion components were derived.

Findings

Target ranges have been identified for the main component properties, balancing the partly conflicting goals between the product and the process requirements.

Practical implications

The findings are expected to assist with the formulation of electrode dispersions as printing inks.

Originality/value

Little knowledge is available regarding the particular requirements arising from the systematic qualification of aqueous electrode dispersions for inkjet printing. This paper addresses these requirements, covering both product and process specifications.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 21 January 2022

Yong Li, Yingchun Zhang, Gongnan Xie and Bengt Ake Sunden

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat…

1298

Abstract

Purpose

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat transfer.

Design/methodology/approach

A brief review of current research on supercritical aviation kerosene is presented in views of the surrogate model of hydrocarbon fuels, chemical cracking mechanism of hydrocarbon fuels, thermo-physical properties of hydrocarbon fuels, turbulence models, flow characteristics and thermal performances, which indicates that more efforts need to be directed into these topics. Therefore, supercritical thermal transport of n-decane is then computationally investigated in the condition of thermal pyrolysis, while the ASPEN HYSYS gives the properties of n-decane and pyrolysis products. In addition, the one-step chemical cracking mechanism and SST k-ω turbulence model are applied with relatively high precision.

Findings

The existing surrogate models of aviation kerosene are limited to a specific scope of application and their thermo-physical properties deviate from the experimental data. The turbulence models used to implement numerical simulation should be studied to further improve the prediction accuracy. The thermal-induced acceleration is driven by the drastic density change, which is caused by the production of small molecules. The wall temperature of the combustion chamber can be effectively reduced by this behavior, i.e. the phenomenon of heat transfer deterioration can be attenuated or suppressed by thermal pyrolysis.

Originality/value

The issues in numerical studies of supercritical aviation kerosene are clearly revealed, and the conjugation mechanism between thermal pyrolysis and convective heat transfer is initially presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 28 March 2022

Subhasree Dutta, Somnath Bhattacharyya and Ioan Pop

The purpose of this study is to analyze the nonhomogeneous model on the mixed convection of Al2O3–Fe3O4 Bingham plastic hybrid nanofluid in a ventilated enclosure subject to an…

Abstract

Purpose

The purpose of this study is to analyze the nonhomogeneous model on the mixed convection of Al2O3–Fe3O4 Bingham plastic hybrid nanofluid in a ventilated enclosure subject to an externally imposed uniform magnetic field. Entropy generation and the pressure drop are determined to analyze the performance of the heat transfer. The significance of Joule heating arising due to the applied magnetic field on the heat transfer of the yield stress fluid is described.

Design/methodology/approach

The ventilation in the enclosure of heated walls is created by an opening on one vertical wall through which cold fluid is injected and another opening on the opposite vertical wall through which fluid can flow out.

Findings

This study finds that the inclusion of Fe3O4 nanoparticles with the Al2O3-viscoplastic nanofluid augments the heat transfer. This rate of enhancement in heat transfer is higher than the rate by which the entropy generation is increased as well as the enhancement in the pressure drop. The yield stress has an adverse effect on the heat transfer; however, it favors thermal mixing. The magnetic field, which is acting opposite to the direction of the inlet jet, manifests heat transfer of the viscoplastic hybrid nanofluid. The horizontal jet of cold fluid produces the optimal heat transfer.

Originality/value

The objective of this study is to analyze the impact of the inclined cold jet of viscoplastic electrically conducting hybrid nanofluid on heat transfer from the enclosure in the presence of a uniform magnetic field. The combined effect of hybrid nanoparticles and a magnetic field to enhance heat transfer of a viscoplastic fluid in a ventilated enclosure has not been addressed before.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 5 September 2023

Ali Akbar Izadi and Hamed Rasam

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data…

Abstract

Purpose

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data processing speeds. This study aims to explore the thermal performance of a CPU cooling setup using a cylindrical porous metal foam heat sink.

Design/methodology/approach

Nanofluid flow through the metal foam is simulated using the Darcy–Brinkman–Forschheimer equation, accounting for magnetic field effects. The temperature distribution is modeled through the local thermal equilibrium equation, considering viscous dissipation. The problem’s governing partial differential equations are solved using the similarity method. The CPU’s hot surface serves as a solid wall, with nanofluid entering the heat sink as an impinging jet. Verification of the numerical results involves comparison with existing research, demonstrating strong agreement across numerical, analytical and experimental findings. Ansys Fluent® software is used to assess temperature, velocity and streamlines, yielding satisfactory results from an engineering standpoint.

Findings

Investigating critical parameters such as Darcy number (10−4DaD ≤ 10−2), aspect ratio (0.5 ≤ H/D ≤ 1.5), Reynolds number (5 ≤ ReD,bf ≤ 3500), Eckert number (0 ≤ ECbf ≤ 0.1) , porosity (0.85 ≤ ε ≤ 0.95), Hartmann number (0 ≤ HaD,bf ≤ 300) and the volume fraction of nanofluid (0 ≤ φ ≤ 0.1) reveals their impact on fluid flow and heat sink performance. Notably, Nusselt number will reduce 45%, rise 19.2%, decrease 14.1%, and decrease 0.15% for Reynolds numbers of 600, with rising porosity from 0.85 to 0.95, Darcy numbers from 10−4 to 10−2, Eckert numbers from 0 to 0.1, and Hartman numbers from 0 to 300.

Originality/value

Despite notable progress in studying thermal management in CPU cooling systems using porous media and nanofluids, there are still significant gaps in the existing literature. First, few studies have considered the Darcy–Brinkman–Forchheimer equation, which accounts for non-Darcy effects and the flow and geometric interactions between coolant and porous medium. The influence of viscous dissipation on heat transfer in this specific geometry has also been largely overlooked. Additionally, while nanofluids and impinging jets have demonstrated potential in enhancing thermal performance, their utilization within porous media remains underexplored. Furthermore, the unique thermal and structural characteristics of porous media, along with the incorporation of a magnetic field, have not been fully investigated in this particular configuration. Consequently, this study aims to address these literature gaps and introduce novel advancements in analytical modeling, non-Darcy flow, viscous dissipation, nanofluid utilization, impinging jets, porous media characteristics and the impact of a magnetic field. These contributions hold promising prospects for improving CPU cooling system thermal management and have broader implications across various applications in the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 21 December 2022

Chaduvula Vijaya Lakshmi, Ch. Ravi Kiran, M. Gowrisankar, Shaik Babu and D. Ramachandran

The paper aims to throw light on the interactions taking place between the different chemical compositions at various temperatures. P-methylacetophenone is a polar dissolvable…

Abstract

Purpose

The paper aims to throw light on the interactions taking place between the different chemical compositions at various temperatures. P-methylacetophenone is a polar dissolvable, which is positively related by dipole–dipole co-operations and is exceptionally compelling a direct result of the shortfall of any critical primary impacts because of the absence of hydrogen bonds; hence, it might work an enormous dipole moment (μ = 3.62 D). Alcohols additionally assume a significant part in industries and research facilities as reagents and pull in incredible consideration as helpful solvents in the green innovation. They are utilized as pressure-driven liquids in drugs, beauty care products, aromas, paints removers, flavors, dye stuffs and as a germ-free specialist.

Design/methodology/approach

Mixtures were prepared by mass in airtight ground stopper bottles. The mass measurements were performed on a digital electronic balance (Mettler Toledo AB135, Switzerland) with an uncertainty of ±0.0001 g. The uncertainty in mole fraction was thus estimated to be less than ±0.0001. The densities of pure liquids and their mixtures were determined using a density meter (DDH-2911, Rudolph Research Analytical). The instrument was calibrated frequently using deionized doubly distilled water and dry air. The estimated uncertainty associated with density measurements is ±0.0003 g.cm−3. Viscosities of the pure liquids and their mixtures were determined by using Ostwald’s viscometer. The viscometer was calibrated at each required temperature using doubly distilled water. The viscometer was cleaned, dried and is filled with the sample liquid in a bulb having capacity of 10 ml. The viscometer was then kept in a transparent walled water bath with a thermal stability of ±0.01K for about 20 min to obtain thermal equilibrium. An electronic digital stop watch with an uncertainty of ±0.01 s was used for the flow time measurements for each sample at least four readings were taken and then the average of these was taken.

Findings

Negative values of excess molar volume, excess isentropic compressibility and positive values of deviation in viscosity including excess Gibbs energy of activation of viscous flow at different temperatures (303.15, 308.15 and 313.15 K) may be attribution to the specific intermolecular interactions through the hetero-association interaction between the components of the mixtures, resulting in the formation of associated complexes through hydrogen bond interactions.

Originality/value

The excess molar volume (VE) values were analyzed with the Prigogine–Flory–Patterson theory, which demonstrated that the free volume contribution is the one of the factors influencing negative values of excess molar quantities. The Jouyban–Acree model was used to correlate the experimental values of density, speed of sound and viscosity.

Details

Arab Gulf Journal of Scientific Research, vol. 41 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 5 February 2024

Krištof Kovačič, Jurij Gregorc and Božidar Šarler

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Abstract

Purpose

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Design/methodology/approach

The physical model is posed in the mixture formulation and copes with the unsteady, incompressible, isothermal, Newtonian, low turbulent two-phase flow. The computational fluid dynamics numerical solution is based on the half-space finite volume discretisation. The geo-reconstruct volume-of-fluid scheme tracks the interphase boundary between the gas and the liquid. To ensure numerical stability in the transition regime and adequately account for turbulent behaviour, the k-ω shear stress transport turbulence model is used. The model is validated by comparison with the experimental measurements on a vertical, downward-positioned GDVN configuration. Three different combinations of air and water volumetric flow rates have been solved numerically in the range of Reynolds numbers for airflow 1,009–2,596 and water 61–133, respectively, at Weber numbers 1.2–6.2.

Findings

The half-space symmetry allows the numerical reconstruction of the dripping, jetting and indication of the whipping mode. The kinetic energy transfer from the gas to the liquid is analysed, and locations with locally increased gas kinetic energy are observed. The calculated jet shapes reasonably well match the experimentally obtained high-speed camera videos.

Practical implications

The model is used for the virtual studies of new GDVN nozzle designs and optimisation of their operation.

Originality/value

To the best of the authors’ knowledge, the developed model numerically reconstructs all three GDVN flow regimes for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 25 July 2019

Juliana Padilha Leitzke and Hubert Zangl

This paper aims to present an approach based on electrical impedance tomography spectroscopy (EITS) for the determination of water and ice fraction in low-power applications such…

932

Abstract

Purpose

This paper aims to present an approach based on electrical impedance tomography spectroscopy (EITS) for the determination of water and ice fraction in low-power applications such as autarkic wireless sensors, which require a low computational complexity reconstruction approach and a low number of electrodes. This paper also investigates how the electrode design can affect the reconstruction results in tomography.

Design/methodology/approach

EITS is performed by using a non-iterative method called optimal first order approximation. In addition to that, a planar electrode geometry is used instead of the traditional circular electrode geometry. Such a structure allows the system to identify materials placed on the region above the sensor, which do not need to be confined in a pipe. For the optimization, the mean squared error (MSE) between the reference images and the obtained reconstructed images was calculated.

Findings

The authors demonstrate that even with a low number of four electrodes and a low complexity reconstruction algorithm, a reasonable reconstruction of water and ice fractions is possible. Furthermore, it is shown that an optimal distribution of the sensor electrodes can help to reduce the MSE without any costs in terms of computational complexity or power consumption.

Originality/value

This paper shows through simulations that the reconstruction of ice and water mixtures is possible and that the electrode design is a topic of great importance, as they can significantly affect the reconstruction results.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 29 November 2022

David Bricín, Filip Véle, Zdeněk Jansa, Zbyněk Špirit, Jakub Kotous and Dana Kubátová

The purpose of this study is to verify how the carbon doping of the WC-Co cemented carbide (CC) affected their structure before their processing by hot isostatic pressing (HIP…

Abstract

Purpose

The purpose of this study is to verify how the carbon doping of the WC-Co cemented carbide (CC) affected their structure before their processing by hot isostatic pressing (HIP) technology.

Design/methodology/approach

The samples for this experiment were fabricated by selective laser melting technology (SLM) using a YAG fiber laser with a power of P = 40 W and a scanning speed of 83 mm/s. The subsequent carbon doping process was performed in a chamber furnace at 900 0 C for 1, 4 and 12 h. The HIP was performed at 1,390°C and pressures of 40 MPa, 80 MPa and 120 MPa. The changes induced in the structures were evaluated using X-ray diffraction and various microscopic methods.

Findings

X-ray diffraction analysis showed that the structure of the samples after SLM consisted of WC, W2C, Co4W2C and Co phases. As a result of the increase in the carbon content in the structure of the samples, the transition carbide W2C and structural phase Co4W2C decayed. Their decay was manifested by the coarsening of the minor alpha phase (WC), which occurred both during the carburizing process and during the subsequent processing using HIP. In the samples in which the structure was carburized prior to HIP, only the structural phases WC and Co were observed in most cases.

Originality/value

The results confirm that it is possible to increase the homogeneity of the CC structure and thus its applicability in practice by additional carburization of the sample structure with subsequent processing by HIP technology.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 22 November 2018

Adrian Chun Hin Lai and Adrian Wing-Keung Law

Incineration has become increasingly important in many large cities around the world because of fast urbanization and population growth. The benefits of energy production and…

1642

Abstract

Purpose

Incineration has become increasingly important in many large cities around the world because of fast urbanization and population growth. The benefits of energy production and large reduction in the waste volume to landfills also contribute to its growing adaptation for solid waste management for these cities. At the same time, the environmental impact of the pollutant gases emitted from the incineration process is a common concern for various stakeholders which must be properly addressed. To minimize the pollutant gas emission levels, as well as maximize the energy efficiency, it is critically important to optimize the combustion performance of an incinerator freeboard which would require the development of reliable approaches based on computational fluid dynamics (CFD) modeling. A critical task in the CFD modeling of an incinerator furnace requires the specification of waste characteristics along the moving grate as boundary conditions, which is not available in standard CFD packages at present. This study aims to address this gap by developing a numerical incinerator waste bed model.

Design/methodology/approach

A one-dimensional Lagrangian model for the incineration waste bed has been developed, which can be coupled to the furnace CFD model. The changes in bed mass due to drying, pyrolysis, devolatilization and char oxidation are all included in the model. The mass and concentration of gases produced in these processes through reactions are also predicted. The one-dimensional unsteady energy equations of solid and gas phases, which account for the furnace radiation, conduction, convection and heat of reactions, are solved by the control volume method.

Findings

The Lagrangian model is validated by comparing its prediction with the experimental data in the literature. The predicted waste bed height reduction, temperature profile and gas concentration are in reasonable agreement with the observations.

Originality/value

The simplicity and efficiency of the model makes it ideally suitable to be used for coupling with the computational furnace model to be developed in future (so as to optimize incinerator designs).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 1 June 2021

Ondřej Bublík, Libor Lobovský, Václav Heidler, Tomáš Mandys and Jan Vimmr

The paper targets on providing new experimental data for validation of the well-established mathematical models within the framework of the lattice Boltzmann method (LBM), which…

Abstract

Purpose

The paper targets on providing new experimental data for validation of the well-established mathematical models within the framework of the lattice Boltzmann method (LBM), which are applied to problems of casting processes in complex mould cavities.

Design/methodology/approach

An experimental campaign aiming at the free-surface flow within a system of narrow channels is designed and executed under well-controlled laboratory conditions. An in-house lattice Boltzmann solver is implemented. Its algorithm is described in detail and its performance is tested thoroughly using both the newly recorded experimental data and well-known analytical benchmark tests.

Findings

The benchmark tests prove the ability of the implemented algorithm to provide a reliable solution when the surface tension effects become dominant. The convergence of the implemented method is assessed. The two new experimentally studied problems are resolved well by simulations using a coarse computational grid.

Originality/value

A detailed set of original experimental data for validation of computational schemes for simulations of free-surface gravity-driven flow within a system of narrow channels is presented.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 465