Search results

1 – 10 of 59
Article
Publication date: 1 June 2022

Sagarika Rout and Gyan Ranjan Biswal

Notable energy losses and voltage deviation issues in low-voltage radial distribution systems are a major concern for power planners and utility companies because of the…

Abstract

Purpose

Notable energy losses and voltage deviation issues in low-voltage radial distribution systems are a major concern for power planners and utility companies because of the integration of electric vehicles (EVs). Electric vehicle charging stations (EVCSs) are the key components in the network where the EVs are equipped to energize their battery. The purpose of this paper is coordinating the EVCS and distributed generation (DG) so as to place them optimally using swarm-based elephant herding optimization techniques by considering energy losses, voltage sensitivity and branch current as key indices. The placement and sizing of the EVCS and DG were found in steps.

Design/methodology/approach

The IEEE 33-bus test feeder and 52-bus Indian practical radial networks were used as the test system for the network characteristic analysis. To enhance the system performance, the radial network is divided into zones for the placement of charging stations and dispersed generation units. Balanced coordination is discussed with three defined situations for the EVCS and DG.

Findings

The proposed analysis shows that DG collaboration with EVCS with suitable size and location in the network improves the performance in terms of stability and losses.

Research limitations/implications

Stability and loss indices are handled with equal weight factor to find the best solution.

Social implications

The proposed method is coordinating EVCS and DG in the existing system; the EV integration in the low-voltage side can be incorporated suitably. So, it has societal impact.

Originality/value

In this study, the proposed method shows improved results in terms EVCS and DG integration in the system with minimum losses and voltage sensitivity. The results have been compared with another population-based particle swarm optimization method (PSO). There is an improvement of 18% in terms of total power losses and 9% better result in minimum node voltage as compared to the PSO technique. Also, there is an enhancement of 33% in the defined voltage stability index which shows the proficiency of the proposed analysis.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 May 2022

Merlin Sajini M.L., Suja S. and Merlin Gilbert Raj S.

The purpose of the study is distributed generation planning in a radial delivery framework to identify an appropriate location with a suitable rating of DG units energized by…

Abstract

Purpose

The purpose of the study is distributed generation planning in a radial delivery framework to identify an appropriate location with a suitable rating of DG units energized by renewable energy resources to scale back the power loss and to recover the voltage levels. Though several algorithms have already been proposed through the target of power loss reduction and voltage stability enhancement, further optimization of the objectives is improved by using a combination of heuristic algorithms like DE and particle swarm optimization (PSO).

Design/methodology/approach

The identification of the candidate buses for the location of DG units and optimal rating of DG units is found by a combined differential evolution (DE) and PSO algorithm. In the combined strategy of DE and PSO, the key merits of both algorithms are combined. The DE algorithm prevents the individuals from getting trapped into the local optimum, thereby providing efficient global optimization. At the same time, PSO provides a fast convergence rate by providing the best particle among the entire iteration to obtain the best fitness value.

Findings

The proposed DE-PSO takes advantage of the global optimization of DE and the convergence rate of PSO. The different case studies of multiple DG types are carried out for the suggested procedure for the 33- and 69-bus radial delivery frameworks and a real 16-bus distribution substation in Tamil Nadu to show the effectiveness of the proposed methodology and distribution system performance. From the obtained results, there is a substantial decrease in the power loss and an improvement of voltage levels across all the buses of the system, thereby maintaining the distribution system within the framework of system operation and safety constraints.

Originality/value

A comparison of an equivalent system with the DE, PSO algorithm when used separately and other algorithms available in literature shows that the proposed method results in an improved performance in terms of the convergence rate and objective function values. Finally, an economic benefit analysis is performed if a photo-voltaic based DG unit is allocated in the considered test systems.

Article
Publication date: 26 December 2023

Mukul Anand, Debashis Chatterjee and Swapan Kumar Goswami

The purpose of this study is to obtain the optimal frequency for low-frequency transmission lines while minimizing losses and maintaining the voltage stability of low-frequency…

Abstract

Purpose

The purpose of this study is to obtain the optimal frequency for low-frequency transmission lines while minimizing losses and maintaining the voltage stability of low-frequency systems. This study also emphasizes a reduction in calculations based on mathematical approaches.

Design/methodology/approach

Telegrapher’s method has been used to reduce large calculations in low-frequency high-voltage alternating current (LF-HVac) lines. The static compensator (STATCOM) has been used to maintain voltage stability. For optimal frequency selection, a modified Jaya algorithm (MJAYA) for optimal load flow analysis was implemented.

Findings

The MJAYA algorithm performed better than other conventional algorithms and determined the optimum frequency selection while minimizing losses. Voltage stability was also achieved with the proposed optimal load flow (OLF), and statistical analysis showed that the proposed OLF reduces the frequency deviation and standard error of the LF-HVac lines.

Originality/value

The optimal frequency for LF-HVac lines has been achieved, Telegrapher’s method has been used in OLF, and STATCOM has been used in LF-HVac transmission lines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 June 2022

Chinnaraj Gnanavel and Kumarasamy Vanchinathan

These implementations not only generate excessive voltage levels to enhance the quality of power but also include a detailed investigating of the various modulation methods and…

Abstract

Purpose

These implementations not only generate excessive voltage levels to enhance the quality of power but also include a detailed investigating of the various modulation methods and control schemes for multilevel inverter (MLI) topologies. Reduced harmonic modulation technology is used to produce 11-level output voltage with the production of renewable energy applications. The simulation is done in the MATLAB/Simulink for 11-level symmetric MLI and is correlated with the conventional inverter design.

Design/methodology/approach

This paper is focused on investigating the different types of asymmetric, symmetric and hybrid topologies and control methods used for the modular multilevel inverter (MMI) operation. Classical MLI configurations are affected by performance issues such as poor power quality, uneconomic structure and low efficiency.

Findings

The variations in both carrier and reference signals and their performance are analyzed for the proposed inverter topologies. The simulation result compares unipolar and bipolar pulse-width modulation (PWM) techniques with total harmonic distortion (THD) results. The solar-fed 11-level MMI is controlled using various modulation strategies, which are connected to marine emergency lighting loads. Various modulation techniques are used to control the solar-fed 11-level MMI, which is connected to marine emergency lighting loads. The entire hardware system is controlled by using SPARTAN 3A field programmable gate array (FPGA) board and the least harmonics are obtained by improving the power quality.

Originality/value

The simulation result compares unipolar and bipolar PWM techniques with THD results. Various modulation techniques are used to control the solar-fed 11-level MMI, which is connected to marine emergency lighting loads. The entire hardware system is controlled by a SPARTAN 3A field programmable gate array (FPGA) board, and the power quality is improved to achieve the lowest harmonics possible.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 6 March 2024

Mouna Zerzeri, Intissar Moussa and Adel Khedher

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Abstract

Purpose

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Design/methodology/approach

The 3PIM is driven by a soft voltage source inverter (VSI) controlled by a specific space vector modulation. By adjusting the appropriate vector sequence selection, the desired VSI output voltage allows a real wind turbine speed emulation in the laboratory, taking into account the wind profile, static and dynamic behaviors and parametric variations for theoretical and then experimental analysis. A Mexican hat profile and a sinusoidal profile are therefore used as the wind speed system input to highlight the electrical, mechanical and electromagnetic system response.

Findings

The simulation results, based on relative error data, show that the proposed reactive power control method effectively estimates the flux and the rotor time constant, thus ensuring an accurate trajectory tracking of the wind speed for the wind emulation application.

Originality/value

The proposed architecture achieves its results through the use of mathematical theory and WTE topology combine with an online adaptive estimator and Lyapunov stability adaptation control methods. These approaches are particularly relevant for low-cost or low-power alternative current (AC) motor drives in the field of renewable energy emulation. It has the advantage of eliminating the need for expensive and unreliable position transducers, thereby increasing the emulator drive life. A comparative analysis was also carried out to highlight the online adaptive estimator fast response time and accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 October 2022

Wanjun Yin and Xuan Qin

This paper aims to reduce the impact of disordered charging of large-scale electric vehicles (EVs) on the grid. EV is great significance for environmental protection, energy…

Abstract

Purpose

This paper aims to reduce the impact of disordered charging of large-scale electric vehicles (EVs) on the grid. EV is great significance for environmental protection, energy conservation and emission reduction to replace fuel vehicles with EVs. However, as a kind of random mobile load, large-scale integration into the power grid may lead to power quality problems such as line overload, line loss increase and voltage reduction. This paper realizes the orderly charging of electric vehicles and the safe operation of the distribution network by optimizing the dispatching scheme.

Design/methodology/approach

This paper takes the typical IEEE-33 node distribution system as the research object, adopts the improved particle swarm optimization algorithm and takes the minimum operation cost, the minimum environmental pollution, the minimum standard deviation of daily load, the minimum peak valley difference of load, the minimum node voltage offset rate and the minimum system grid loss rate as the optimization objectives.

Findings

Controlling the disordered charging of large-scale electric vehicles by optimizing the dispatching algorithm can realize the full consumption of renewable energy and the safe operation of the power grid.

Originality/value

Results show that the proposed scheme can realize the transfer of charging load in time and space, so as to stabilize the load fluctuation of distribution grid, improve the operation quality of power grid, reduce the charging cost of users and achieve the expected research objectives.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Open Access
Article
Publication date: 5 February 2024

Oluwadamilola Esan, Nnamdi I. Nwulu, Love Opeyemi David and Omoseni Adepoju

This study aims to investigate the impact of the 2013 privatization of Nigeria’s energy sector on the technical performance of the Benin Electricity Distribution Company (BEDC…

Abstract

Purpose

This study aims to investigate the impact of the 2013 privatization of Nigeria’s energy sector on the technical performance of the Benin Electricity Distribution Company (BEDC) and its workforce.

Design/methodology/approach

This study used a questionnaire-based approach, and 196 participants were randomly selected. Analytical tools included standard deviation, Spearman rank correlation and regression analysis.

Findings

Before privatization, the energy sector, managed by the power holding company of Nigeria, suffered from inefficiencies in fault detection, response and billing. However, privatization improved resource utilization, replaced outdated transformers and increased operational efficiency. However, in spite of these improvements, BEDC faces challenges, including unstable voltage generation and inadequate staff welfare. This study also highlighted a lack of experience among the trained workforce in emerging electricity technologies such as the smart grid.

Research limitations/implications

This study’s focus on BEDC may limit its generalizability to other energy companies. It does not delve into energy sector privatization’s broader economic and policy implications.

Practical implications

The positive outcomes of privatization, such as improved resource utilization and infrastructure investment, emphasize the potential benefits of private ownership and management. However, voltage generation stability and staff welfare challenges call for targeted interventions. Recommendations include investing in voltage generation enhancement, smart grid infrastructure and implementing measures to enhance employee well-being through benefit plans.

Social implications

Energy sector enhancements hold positive social implications, uplifting living standards and bolstering electricity access for households and businesses.

Originality/value

This study contributes unique insights into privatization’s effects on BEDC, offering perspectives on preprivatization challenges and advancements. Practical recommendations aid BEDC and policymakers in boosting electricity distribution firms’ performance within the privatization context.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 12 January 2024

Masume Khodsuz, Amir Hamed Mashhadzadeh and Aydin Samani

Electrical characteristics of transformer oil (TO) have been studied during normal and thermal aging conditions. In this paper, breakdown voltage (BDV), partial discharge (PD)…

Abstract

Purpose

Electrical characteristics of transformer oil (TO) have been studied during normal and thermal aging conditions. In this paper, breakdown voltage (BDV), partial discharge (PD), heat transfer results and the physical mechanisms considering the impact of varying the diameter of Al2O3 nanoparticles (NPs) have been investigated. Different quantities of the two sizes of Al2O3 were added to the oil using a two-step method to determine the positive effect of NPs on the electrical and thermal properties of TO. Finally, the physical mechanisms related to the obtained experimental results have been performed.

Design/methodology/approach

The implementation of nanoparticles in this paper was provided by US Research Nanomaterials, Inc., USA. The provided Al2O3 NPs have an average particle size of 20–80 nm and a specific surface area of 138 and 58 m2/g, respectively, which have a purity of over 99%. Thermal aging has been done. The IEC 60156 standard has been implemented to calculate the BDV, and a 500-mL volume test cell (Apar TO 1020) has been used. PD test is performed according to Standard IEC 60343, and a JDEVS-PDMA 300 device was used for this test.

Findings

BDV tests indicate that 20 nm Al2O3 is more effective at improving BDV than 80 nm Al2O3, with an improvement of 113% compared to 99% for the latter. The analysis of Weibull probability at BDV indicates that 20 nm Al2O3 performs better, with improvements of 141%, 125% and 112% at probabilities of 1, 10 and 50%, respectively. The results of the PD tests using the PDPR pattern also show that 20 nm Al2O3 is superior. For the heat transfer test, 0.05 g/L of both diameters were used to ensure fair conditions, and again, the advantage was with 20 nm Al2O3 (23% vs 18%).

Originality/value

The effect of Al2O3 NP diameter (20 and 80 nm) on various properties of virgin and aged TO has been investigated experimentally in this paper to examine the effect of proposed NP on electrical improvement of TO.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 October 2023

WenFeng Qin, Yunsheng Xue, Hao Peng, Gang Li, Wang Chen, Xin Zhao, Jie Pang and Bin Zhou

The purpose of this study is to design a wearable medical device as a human care platform and to introduce the design details, key technologies and practical implementation…

Abstract

Purpose

The purpose of this study is to design a wearable medical device as a human care platform and to introduce the design details, key technologies and practical implementation methods of the system.

Design/methodology/approach

A multi-channel data acquisition scheme based on PCI-E (rapid interconnection of peripheral components) was proposed. The flexible biosensor is integrated with the flexible data acquisition card with monitoring capability, and the embedded (device that can operate independently) chip STM32F103VET6 is used to realize the simultaneous processing of multi-channel human health parameters. The human health parameters were transferred to the upper computer LabVIEW by intelligent clothing through USB or wireless Bluetooth to complete the transmission and processing of clinical data, which facilitates the analysis of medical data.

Findings

The smart clothing provides a mobile medical cloud platform for wearable medical through cloud computing, which can continuously monitor the body's wrist movement, body temperature and perspiration for 24 h. The result shows that each channel is completely accurate to the top computer display, which can meet the expected requirements, and the wearable instant care system can be applied to healthcare.

Originality/value

The smart clothing in this study is based on the monitoring and diagnosis of textiles, and the electronic communication devices can cooperate and interact to form a wearable textile system that provides medical monitoring and prevention services to individuals in the fastest and most accurate way. Each channel of the system is precisely matched to the display screen of the host computer and meets the expected requirements. As a real-time human health protection platform technology, continuous monitoring of human vital signs can complete the application of human motion detection, medical health monitoring and human–computer interaction. Ultimately, such an intelligent garment will become an integral part of our everyday clothing.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 March 2024

Zeyu Xing, Tachia Chin, Jing Huang, Mirko Perano and Valerio Temperini

The ongoing paradigm shift in the energy sector holds paramount implications for the realization of the sustainable development goals, encompassing critical domains such as…

Abstract

Purpose

The ongoing paradigm shift in the energy sector holds paramount implications for the realization of the sustainable development goals, encompassing critical domains such as resource optimization, environmental stewardship and workforce opportunities. Concurrently, this transformative trajectory within the power sector possesses a dual-edged nature; it may ameliorate certain challenges while accentuating others. In light of the burgeoning research stream on open innovation, this study aims to examine the intricate dynamics of knowledge-based industry-university-research networking, with an overarching objective to elucidate and calibrate the equilibrium of ambidextrous innovation within power systems.

Design/methodology/approach

The authors scrutinize the role of different innovation organizations in three innovation models: ambidextrous, exploitative and exploratory, and use a multiobjective decision analysis method-entropy weight TOPSIS. The research was conducted within the sphere of the power industry, and the authors mined data from the widely used PatSnap database.

Findings

Results show that the breadth of knowledge search and the strength of an organization’s direct relationships are crucial for ambidextrous innovation, with research institutions having the highest impact. In contrast, for exploitative innovation, depth of knowledge search, the number of R&D patents and the number of innovative products are paramount, with universities playing the most significant role. For exploratory innovation, the depth of knowledge search and the quality of two-mode network relations are vital, with research institutions yielding the best effect. Regional analysis reveals Beijing as the primary hub for ambidextrous and exploratory innovation organizations, while Jiangsu leads for exploitative innovation.

Practical implications

The study offers valuable implications to cope with the dynamic state of ambidextrous innovation performance of the entire power system. In light of the findings, the dynamic state of ambidextrous innovation performance within the power system can be adeptly managed. By emphasizing a balance between exploratory and exploitative strategies, stakeholders are better positioned to respond to evolving challenges and opportunities. Thus, the study offers pivotal guidance to ensure sustained adaptability and growth in the power sector’s innovation landscape.

Originality/value

The primary originality is to extend and refine the theoretical understanding of ambidextrous innovation within power systems. By integrating several theoretical frameworks, including social network theory, knowledge-based theory and resource-based theory, the authors enrich the theoretical landscape of power system ambidextrous innovation. Also, this inclusive examination of two-mode network structures, including the interplay between knowledge and cooperation networks, unveils the intricate interdependencies between these networks and the ambidextrous innovation of power systems. This approach significantly widens the theoretical parameters of innovation network research.

Details

Journal of Knowledge Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1367-3270

Keywords

1 – 10 of 59