Search results

1 – 10 of over 2000
Content available
Article
Publication date: 1 June 2004

60

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 51 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 February 1989

Bennett J. Price

Uninterruptible Power Supply (UPS) systems are typically designed to provide power to computers for five to thirty minutes after all utility company power has failed. In…

Abstract

Uninterruptible Power Supply (UPS) systems are typically designed to provide power to computers for five to thirty minutes after all utility company power has failed. In addition to providing blackout and brownout protection, many UPS systems also protect against spikes, surges, sags, and noise, and some also offer many of the features found in power distribution units (PDUs). The major components or subsystems of a typical UPS system are detailed, and a sample bid specification is appended. Three sidebars discuss UPSs and air conditioning, the maintenance bypass switch (MBS), and literature for further reading.

Details

Library Hi Tech, vol. 7 no. 2
Type: Research Article
ISSN: 0737-8831

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 July 2013

Gorazd Štumberger, Bojan Štumberger, David Stojan, Željko Plantić, Klemen Deželak, Matjaž Čemažar and Drago Dolinar

Many authors reported the decrease of performances when electric machines and electromagnetic devices were supplied by pulse width modulated (PWM) voltages. However, these…

Abstract

Purpose

Many authors reported the decrease of performances when electric machines and electromagnetic devices were supplied by pulse width modulated (PWM) voltages. However, these statements are rarely supported by measurements performed under fair conditions. The aim of this paper is to compare the performances of a single‐phase transformer and a three‐phase permanent magnet synchronous motor (PMSM) supplied by sinusoidal and PWM voltages and to find a way to evaluate the decrease of performances when PWM voltages are applied.

Design/methodology/approach

In order to perform a fair comparison between performances of the tested objects supplied by sinusoidal and PWM voltages, an experimental system was built. It contains a single‐phase and a three‐phase linear rectifier for supply with sinusoidal voltages and an H‐bridge inverter and a three‐phase inverter for supply with PWM voltages. The tests and measurements were performed on a single‐phase transformer and three‐phase PMSM, where different constant loads and different modulation frequencies were used. The test conditions were identical for the supply by sinusoidal and PWM voltages. The measured data, used for the evaluation of performances, were the input and output power and the time behaviours of currents and voltages together with their THDs.

Findings

The results presented in the paper clearly show that the efficiency of the singe‐phase transformer and three‐phase PMSM decreases with the increasing level of voltage THD. To properly determine the THD of PWM voltage, the sampling frequencies above 1 MHz and special equipment are normally required. However, if the modulation frequency is not too high, also the current THD, which can be easily determined, can be used to evaluate the decrease of efficiency in the case of supply by PWM voltages.

Originality/value

The results presented in the paper clearly show that the efficiency of the singe‐phase transformer and three‐phase PMSM decreases with the increasing level of voltage THD.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

Z.Q. Zhu and Jiabing Hu

Wind energy has matured to a level of development at which it is ready to become a generally accepted power generation technology. The aim of this paper is to provide a…

1616

Abstract

Purpose

Wind energy has matured to a level of development at which it is ready to become a generally accepted power generation technology. The aim of this paper is to provide a brief review of the state of the art in the area of electrical machines and power‐electronic systems for high‐power wind energy generation applications. As the first part of this paper, latest market penetration, current technology and advanced electrical machines are addressed.

Design/methodology/approach

After a short description of the latest market penetration of wind turbines with various topologies globally by the end of 2010 is provided, current wind power technology, including a variety of fixed‐ and variable‐speed (in particular with doubly‐fed induction generator (DFIG) and permanent magnet synchronous generator (PMSG) supplied with partial‐ and full‐power converters, respectively) wind power generation systems, and modern grid codes, is presented. Finally, four advanced electrical‐machine systems, viz., brushless DFIG, open winding PMSG, dual/multi 3‐phase stator‐winding PMSG and magnetic‐gear outer‐rotor PMSG, are identified with their respective merits and challenges for future high‐power wind energy applications.

Findings

For the time being, the gear‐drive DFIG‐based wind turbine is significantly dominating the markets despite its defect caused by mechanical gears, slip rings and brush sets. Meanwhile, direct‐drive synchronous generator, especially utilizing permanent magnets on its rotor, supplied with a full‐capacity power converter has become a more effective solution, particularly in high‐power offshore wind farm applications.

Originality/value

This first part of the paper reviews the latest market penetration of wind turbines with a variety of mature topologies, by summarizing their advantages and disadvantages. Four advanced electrical‐machine systems are selected and identified by distinguishing their respective merits and challenges for future high‐power wind energy applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

P.Di Barba

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed…

Abstract

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed performance. Notes that 18 papers from the Symposium are grouped in the area of automated optimal design. Describes the main challenges that condition computational electromagnetism’s future development. Concludes by itemizing the range of applications from small activators to optimization of induction heating systems in this third chapter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

Z.Q. Zhu and Jiabing Hu

Power‐electronic systems have been playing a significant role in the integration of large‐scale wind turbines into power systems due to the fact that during the past three…

8371

Abstract

Purpose

Power‐electronic systems have been playing a significant role in the integration of large‐scale wind turbines into power systems due to the fact that during the past three decades power‐electronic technology has experienced a dramatic evolution. This second part of the paper aims to focus on a comprehensive survey of power converters and their associated control systems for high‐power wind energy generation applications.

Design/methodology/approach

Advanced control strategies, i.e. field‐oriented vector control and direct power control, are initially reviewed for wind‐turbine driven doubly fed induction generator (DFIG) systems. Various topologies of power converters, comprising back‐to‐back (BTB) connected two‐ and multi‐level voltage source converters (VSCs), BTB current source converters (CSCs) and matrix converters, are identified for high‐power wind‐turbine driven PMSG systems, with their respective features and challenges outlined. Finally, several control issues, viz., basic control targets, active damping control and sensorless control schemes, are elaborated for the machine‐ and grid‐side converters of PMSG wind generation systems.

Findings

For high‐power PMSG‐based wind turbines ranging from 3 MW to 5 MW, parallel‐connected 2‐level LV BTB VSCs are the most cost‐effective converter topology with mature commercial products, particularly for dual 3‐phase stator‐winding PMSG generation systems. For higher‐capacity wind‐turbine driven PMSGs rated from 5 MW to 10 MW, medium voltage multi‐level converters, such as 5‐level regenerative CHB, 3‐ and 4‐level FC BTB VSC, and 3‐level BTB VSC, are preferred. Among them, 3‐level BTB NPC topology is the favorite with well‐proven technology and industrial applications, which can also be extensively applicable with open‐end winding and dual stator‐winding PMSGs so as to create even higher voltage/power wind generation systems. Sensorless control algorithms based on fundamental voltages/currents are suggested to be employed in the basic VC/DPC schemes for enhancing the robustness in the entire PMSG‐based wind power generation system, due to that the problems related with electromagnetic interferences in the position signals and the failures in the mechanical encoders can be avoided.

Originality/value

This second part of the paper for the first time systematically reviews the latest state of arts with regard to power converters and their associated advanced control strategies for high‐power wind energy generation applications. It summarizes a variety of converter topologies with pros and cons highlighted for different power ratings of wind turbines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2015

Jianxin Shen and Dong-Min Miao

The purpose of this paper is to focus on the machine design and control strategy of the permanent magnet synchronous generator (PMSG) system, especially utilized in…

Abstract

Purpose

The purpose of this paper is to focus on the machine design and control strategy of the permanent magnet synchronous generator (PMSG) system, especially utilized in variable speed applications, in order to stabilize the output voltage on the dc link over a wide speed range.

Design/methodology/approach

Different ac/dc power converter topologies are comparatively studied, each with an accordingly designed PMSG, so as to investigate the influence of the armature winding inductance as well as the relationship between the PMSG and power converter topologies.

Findings

Pulse width modulation (PWM) rectifier is preferable for the said application due to its good performance and controllability. Moreover, by employing the PWM rectifier, relatively large inductance of the PMSG is considered for both short-circuit current reduction and field regulation.

Originality/value

Field-regulating control is realized with a space vector PWM (SVPWM) rectifier, which can weaken the PMSG magnetic field during high-speed operation, while even properly enhance the field at low speed, ensuring a small change of the PMSG output voltage and a stable dc voltage.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 May 2017

Mohamed Omar Younsi, Olivier Ninet, Fabrice Morganti, Jean-Philippe Lecointe, Farid Zidat and Matthieu Buire

This paper aims to study the influence of supply voltage variations on the external magnetic field emitted by grid-powered induction machines (IMs).

Abstract

Purpose

This paper aims to study the influence of supply voltage variations on the external magnetic field emitted by grid-powered induction machines (IMs).

Design/methodology/approach

Two models are developed in the paper to analyse, for different supply voltage values, the influence of the variations of the magnetizing voltage for which there is a link with the tangential component of the external flux. The first is an analytical model based on the IM single-phase-equivalent circuit with variable magnetizing reactance to take into account the saturation of the magnetic circuit. The second is a numerical finite element simulation to model the same phenomenon. Results of both models are analysed with experimental measures of the external flux.

Findings

The study shows that the amplitude of the external field strongly depends on supply voltage values.

Research limitations/implications

The investigation is mainly focused on the tangential component of the external magnetic field which is of high importance concerning the applicability of non-invasive methods of diagnosis, as electromagnetic torque estimation developed by the authors or internal fault determination.

Originality/value

The originality of the paper concerns the characterization of the external flux with the supply voltage for IMs. It is shown that the magnetic circuit radiates external flux differently with the load and with the supply voltage.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 September 2015

Paul Handgruber, Simon Schernthanner, Oszkár Bíró, Andrej Stermecki and Georg Ofner

The purpose of this paper is to study the effects of inverter supply on the iron loss characteristics of slip-ring induction machines. Pulse width modulated (PWM) voltage

Abstract

Purpose

The purpose of this paper is to study the effects of inverter supply on the iron loss characteristics of slip-ring induction machines. Pulse width modulated (PWM) voltage supply on the stator side, as well as a doubly fed operation mode with rotor-sided inverter, are investigated.

Design/methodology/approach

An inverter fed machine model is coupled to previously developed eddy current and hysteresis loss models. The eddy current model is based on a finite element method and considers the three-dimensional (3D) eddy current distribution in the steel sheets. The hysteresis losses are computed by a static Preisach vector model.

Findings

It is found that under stator-sided inverter supply the eddy current losses do significantly increase when compared to sinusoidal feeding, contributing to a total loss increase of 10-15 percent. In doubly fed operation, the additional losses are generally lower owing to the winding topology of the studied machine.

Research limitations/implications

The analyses presented are restricted to single PWM pattern only. The influences of different PWM parameters remain to be investigated in future.

Practical implications

Regarding practical applications, the reduced additional losses in doubly fed configurations can be considered as a further advantage when competing against other topologies available.

Originality/value

The 3D eddy current model is applied for the first time to quantify the effects of inverter supply. Furthermore, the presented studies on the iron losses in doubly fed operation are original and of practical value for designers and researches.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 2000