Search results

1 – 10 of 237
Article
Publication date: 4 August 2014

Monika Zawadzka, Jan Kulawik, Dorota Szwagierczak and Krzysztof Zaraska

The purpose of this paper is to present fabrication process of volatile organic compounds (VOCs) sensors based on polypyrrole material deposited on different substrates and to…

Abstract

Purpose

The purpose of this paper is to present fabrication process of volatile organic compounds (VOCs) sensors based on polypyrrole material deposited on different substrates and to show and compare the responses of the produced sensors to different VOCs.

Design/methodology/approach

Polypyrrole sensing layers were prepared by in situ chemical polymerisation on two different substrates: alumina and poly(ethylene terephthalate) (PET). The time of the polymerisation was varied. After film deposition, an interdigitated electrode was screen-printed on the material deposited on the substrate.

Findings

It was demonstrated that both polymerisation time and substrate type provide means to vary the sensitivity of polypyrrole-based sensors to VOCs.

Practical implications

VOCs, which are released in manufacturing or use of various products and materials, pose a threat to the environment and human health. Therefore, measures must be taken to control their concentration both in indoor and outdoor air.

Originality/value

Deposition of a conductive polymer film on the substrate via in situ chemical polymerisation followed by screen-printing of an interdigitated electrode on the polymer surface offers a fast and an effective method of chemiresistor-type sensor fabrication.

Details

Microelectronics International, vol. 31 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 29 October 2021

Mokhtar Aarabi, Alireza Salehi and Alireza Kashaninia

The purpose of this study is use to density functional theory (DFT) to investigate the molecular adsorption by PEDOT:PSS for different doping levels. DFT calculations are…

Abstract

Purpose

The purpose of this study is use to density functional theory (DFT) to investigate the molecular adsorption by PEDOT:PSS for different doping levels. DFT calculations are performed using the SIESTA code. In addition, the non-equilibrium Green’s function method is used within the TranSIESTA code to determine the quantum transport properties of molecular nanodevices.

Design/methodology/approach

Density functional theory (DFT) is used to investigate the molecular adsorption by PEDOT:PSS for different doping levels. DFT calculations are performed using the SIESTA code. In addition, the non-equilibrium Green’s function method is used within the TranSIESTA code to determine the quantum transport properties of molecular nanodevices.

Findings

Simulation results show very good sensitivity of Pd-doped PEDOT:PSS to ammonia, carbon dioxide and methane, so this structure cannot be used for simultaneous exposure to these gases. Silver-doped PEDOT:PSS structure provides a favorable sensitivity to ammonia in addition to exhibiting a better selectivity. If the experiment is repeated, the sensitivity is increased for a larger concentration of the applied gas. However, the sensitivity will decrease at a higher ratio than smaller concentrations of gas.

Originality/value

The advantages of the proposed sensor are its low-cost implementation and simple fabrication process compared to other sensors. Moreover, the proposed sensor exhibits appropriate sensitivity and repeatability at room temperature.

Details

Sensor Review, vol. 41 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 8 August 2023

M. Yuvaraj, R. Jothi Basu, Muhammad Dan-Asabe Abdulrahman and C. Ganesh Kumar

Information and communication technology (ICT) implementation has demonstrated usefulness in supply chain coordination and efficiency optimization in various industries and…

Abstract

Purpose

Information and communication technology (ICT) implementation has demonstrated usefulness in supply chain coordination and efficiency optimization in various industries and sectors. This study investigates the extent of ICT deployment in fruits and vegetable supply chains (FVSC) from “farm-to-fork” to ensure food security.

Design/methodology/approach

This paper employs a systematic literature review (SLR) methodology and identified a total of 99 journal articles ranging from 2001 to April 2023 for analysis. The reviewed articles have been classified based on the framework proposed from the perspective of food security. Bibliometric and content analysis is carried out with the final list of articles to extract useful insights.

Findings

The findings reveal that ICT implementation in FVSC is a relatively new research area; researchers have started investigating several aspects of ICT in FVSC through varied research methodologies. Experimental research aimed at addressing food safety and condition monitoring of fruits and vegetables (FV) has started to gain traction while theory building is yet to gain traction in the literature reviewed. Findings indicate further research is required on technologies like blockchain (BCT), artificial intelligence (AI) and machine learning (ML), especially on key objectives such as food security, and the triple-bottom-line approach of sustainability. It also indicates that implementing relevant ICTs in FVSC can help delay, if not avert, the food crisis predicted by Malthusian theory.

Research limitations/implications

This study used only well-established databases to ensure quality of the studies examined. There is a possibility of missing out on articles from other sources not considered. As a result, future SLR studies may employ additional databases, such as Springer Link, Taylor and Francis, Emerald Insight and Google Scholar. Other methodologies such as expert interviews and extra empirical methodologies may also be employed to give a more balanced picture and insights into ICTs implementation in FVSC.

Practical implications

This study offers a summative detail of the status of ICT implementation in FVSC and can serve as a reference guide for stakeholders in developing strategies for efficient FVSC management. This research work highlights the impact of ICT implementation in FVSC on the four pillars of food security which include improved availability, accessibility, utilization and stability.

Originality/value

This study focuses on ICT implementation for food security in FVSC. The SLR highlights the gaps and proffers potential solutions that enhance global efforts on food security through ICT-enabled reduction in food waste and food loss in FVSC.

Details

Industrial Management & Data Systems, vol. 123 no. 9
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 20 November 2009

Diana F. Spears, David R. Thayer and Dimitri V. Zarzhitsky

In light of the current international concerns with security and terrorism, interest is increasing on the topic of using robot swarms to locate the source of chemical hazards. The…

Abstract

Purpose

In light of the current international concerns with security and terrorism, interest is increasing on the topic of using robot swarms to locate the source of chemical hazards. The purpose of this paper is to place this task, called chemical plume tracing (CPT), in the context of fluid dynamics.

Design/methodology/approach

This paper provides a foundation for CPT based on the physics of fluid dynamics. The theoretical approach is founded upon source localization using the divergence theorem of vector calculus, and the fundamental underlying notion of the divergence of the chemical mass flux. A CPT algorithm called fluxotaxis is presented that follows the gradient of this mass flux to locate a chemical source emitter.

Findings

Theoretical results are presented confirming that fluxotaxis will guide a robot swarm toward chemical sources, and away from misleading chemical sinks. Complementary empirical results demonstrate that in simulation, a swarm of fluxotaxis‐guided mobile robots rapidly converges on a source emitter despite obstacles, realistic vehicle constraints, and flow regimes ranging from laminar to turbulent. Fluxotaxis outperforms the two leading competitors, and the theoretical results are confirmed experimentally. Furthermore, initial experiments on real robots show promise for CPT in relatively uncontrolled indoor environments.

Practical implications

A physics‐based approach is shown to be a viable alternative to existing mainly biomimetic approaches to CPT. It has the advantage of being analyzable using standard physics analysis methods.

Originality/value

The fluxotaxis algorithm for CPT is shown to be “correct” in the sense that it is guaranteed to point toward a true source emitter and not be fooled by fluid sinks. It is experimentally (in simulation), and in one case also theoretically, shown to be superior to its leading competitors at finding a source emitter in a wide variety of challenging realistic environments.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 19 February 2018

Susan Samadi, Ghasem Asadi Cordshooli, Mohammad Yousefi, Khadijeh Kalateh and SeyedAmirabbas Zakaria

This paper aims to introduce constructed CeO2/TiO2 core/shell nanoparticle as sensitive substance organic compounds.

Abstract

Purpose

This paper aims to introduce constructed CeO2/TiO2 core/shell nanoparticle as sensitive substance organic compounds.

Design/methodology/approach

The CeO2 nanoparticles were synthesized by hydrothermal treatment. Then CeO2/TiO2 core/shell was fabricated by sol–gel method preparation of TiO2 in the presence of ceria nanoparticles and applied as the sensitive material to make a sensor.

Findings

Formation of the nanoparticles was confirmed by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). The synthesized sensor exhibited not only good sensitivity to volatile organic compounds at room temperature but also logarithm of sensitivity versus concentrations was linear.

Research limitations/implications

The sensor shows acceptable sensitivity to volatile organic compound at room temperature.

Practical implications

Experimental data revealed satisfactory reproducibility and short response and recovery times.

Originality/value

A radical mechanism for gas sensor reaction in two pathways was considered and activation energies were calculated by density functional theory (DFT) method to describe different sensitivities of tested volatile gases. The experimental results were consistent with the calculations.

Details

Sensor Review, vol. 38 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 June 2013

Yage Zhan, Kan Gu, Hua Wu and Jun Luo

The on‐line concentration and temperature measurement of solutions is of great interest as a means of quality production control in many industrial processes, such as in food…

Abstract

Purpose

The on‐line concentration and temperature measurement of solutions is of great interest as a means of quality production control in many industrial processes, such as in food service industry, pharmaceuticals industry, chemical industry and environmental engineering, especially for harmful solutions or solutions that cannot be reached by the operator. This paper seeks to address these issues.

Design/methodology/approach

A high resolution all‐fiber multi‐parameter sensor system has been studied theoretically and experimentally. The sensor system can be used for on‐line monitoring of concentration and temperature simultaneously and dynamically. A combined long period fiber grating (CLPG) is used as the sensor head based on its resonance wavelength shifts being almost linearly with concentration and temperature, and also based on that the two applied resonance peaks have different concentration‐wavelength coefficients and different temperature‐wavelength coefficients. Two wavelength‐matched fiber Bragg gratings (FBGs) are used to convert resonance peak wavelengths of the CLPG into corresponding intensities for interrogation.

Findings

When the concentration and the temperature all fluctuate dynamically during experiments, a concentration resolution of 0.03 g/L has been achieved in the range of 0∼200 g/L, and a temperature resolution of 0.02C has been realized in the range of −20∼60C.

Originality/value

On‐line monitoring of concentration and temperature for solutions is a means of quality production control in biological, chemical and other many industrial processes, such as in food service industry, pharmaceuticals industry, chemical industry, and also in environmental engineering, especially for harmful solutions or solutions that cannot be reached by the operator. Optical fiber sensors have numerous advantages over traditional sensors, such as immunity to electromagnetic interference, higher stability and sensitivity, more easiness of multiplex, being competent for application in harsh environments, “smart structures” and on‐site measurements. Long period optical fiber grating sensor is the most appropriate sensor for multi‐parameter monitoring in the fields mentioned above, which has all the advantages of optical fiber sensor. Besides, optical fiber grating sensors can be used for monitoring more accurately because its signal is coded by wavelength. The all‐fiber sensor system is suitable for remote monitoring of many solutions, such as the solutions of NaCl, glucose, alcohol, and hydrocarbon.

Details

Sensor Review, vol. 33 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 10 May 2011

Dejan V. Tošić and Marija F. Hribšek

The purpose of this paper is to model multilayer structure surface acoustic wave (SAW) sensors, incorporated in CMOS or micro‐electro‐mechanical system integrated circuits, and to…

Abstract

Purpose

The purpose of this paper is to model multilayer structure surface acoustic wave (SAW) sensors, incorporated in CMOS or micro‐electro‐mechanical system integrated circuits, and to derive the corresponding wave velocity as an analytic expression in terms of the layers‘ thickness and density, which is suitable for analysis and design.

Design/methodology/approach

The method is based on an electro‐mechanical equivalent model of multilayer structure SAW sensors. A multilayered SAW device is represented by a two‐port electrical equivalent circuit consisting of three parts: input transducer, output transducer, and between them the delay line, which is the sensing part. The sensing part is modelled as a mechanical two‐port network. The wave velocity is calculated using analogy between the mechanical and electrical quantities and the fact that the wave motion of the SAW extends below the surface to a depth of about one wavelength.

Findings

The presented model predicts very efficiently and accurately the velocity of SAW sensors with multilayer substrates in the case where the thicknesses of upper layers are much smaller than the signal wavelength. The velocity can be calculated from the formula, so that elaborate numerical computations involving partial differential equations are avoided.

Research limitations/implications

The model and the velocity calculation can be applied only to acoustically thin upper and middle layers where acoustically thin means that a layer is sufficiently thin and rigid (large shear modulus). The presented results provide a starting‐point for further research in the analysis and design of sensors fabricated using AlGaN, GaN, AlN/diamond.

Practical implications

Since the majority of SAW sensors is designed with acoustically thin layers, the proposed model and calculation can be of interest for many practical material combinations. The presented model and calculation can be used in most cases of the optimal sensor design with respect to the sensor sensitivity or required area on the sensor chip.

Originality/value

The paper presents a new original model of multilayer structure SAW sensors and a new method of SAW velocity calculation. The method gives good results, with much simpler calculations than in the wave equation method, in cases where certain layers are acoustically thin.

Details

Microelectronics International, vol. 28 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 20 March 2017

Sajad Pirsa and Fardin Mohammad Nejad

The purpose of this paper is to construct an array of sensors using polypyrrole–zinc oxide (PPy–ZnO) and PPy–vanadium (V; chemical formula: V2O5) fibers. To test responses of…

Abstract

Purpose

The purpose of this paper is to construct an array of sensors using polypyrrole–zinc oxide (PPy–ZnO) and PPy–vanadium (V; chemical formula: V2O5) fibers. To test responses of sensors, a central composite design (CCD) has been used. The results of the CCD technique revealed that the developed sensors are orthogonally sensitive to diacetyl, lactic acid and acetic acid. In total, 20 different mixtures of diacetyl, lactic acid and acetic acid were prepared, and the responses of the array sensors were recorded for each mixture.

Design/methodology/approach

A response surface regression analysis has been used for correlating the responses of the sensors to diacetyl, lactic acid and acetic acid concentrations during the gas phase in food samples. The developed multivariate model was used for simultaneous determination of diacetyl, lactic acid and acetic acid concentrations. Some food samples with unknown concentrations of diacetyl, lactic acid and acetic acid were provided, and the responses of array sensors to each were recorded.

Findings

The responses of each sensor were considered as target response in a response optimizer, and by an overall composite desirability, the concentration of each analyte was predicted. The present work suggests the applicability of the response surface regression analysis as a modeling technique for correlating the responses of sensor arrays to concentration profiles of diacetyl, lactic acid and acetic acid in food samples.

Originality/value

The PPy–ZnO and PPy–V2O5 nanocomposite fibers were synthesized by chemical polymerization. The provided conducting fibers, PPy–ZnO and PPy–V2O5, were used in an array gas sensor system for the analysis of volatile compounds (diacetyl, lactic acid and acetic acid) added to yogurt and milk samples.

Details

Sensor Review, vol. 37 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 January 2011

Behzad Bahraminejad, Shahnor Basri, Maryam Isa and Zarida Hambali

The purpose of this paper is to explore the ability of capillary‐attached gas sensor (CGS) in detecting components of gas mixtures, including a volatile organic gas and hydrogen…

Abstract

Purpose

The purpose of this paper is to explore the ability of capillary‐attached gas sensor (CGS) in detecting components of gas mixtures, including a volatile organic gas and hydrogen in a wide range of concentrations.

Design/methodology/approach

Diverse feature extraction and classification techniques were employed to analyze the response of CGS when applied to different mixtures.

Findings

It was observed that the response of CGS to the above gas mixtures could be distinguishable. While evaluating the results of the classification technique, it was implied that hydrogen, in the presence of the volatile organic gases, could be detected perfectly by analyzing the response of the CGS. Separating techniques, which yielded a high rate of classification, were used to separate mixtures containing hydrogen and organic gases from other organic gas mixtures without hydrogen.

Originality/value

The results presented in this paper prove the ability of CGS in fabricating an olfactory machine for analyzing the components of gas mixtures.

Details

Sensor Review, vol. 31 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 January 2012

Graham Mills and Gary Fones

This article aims to review the different devices that are available for the in situ monitoring of analytes found in the marine environment.

1948

Abstract

Purpose

This article aims to review the different devices that are available for the in situ monitoring of analytes found in the marine environment.

Design/methodology/approach

Following a short introduction to the topic, this paper discusses physical‐ and chemical‐based sensors, automatic analysers (flow injection, spectroscopic and spectrometric), electrochemical devices and biosensors.

Findings

A wide range of in situ monitoring systems (and associated deployment apparatus) for measuring concentrations of various analytes (e.g. nutrients, organic chemicals and metallic elements) have been developed in recent decades. Many of these systems are still at the laboratory or prototype stage and are yet to be fully developed into commercially available products. The harsh conditions often found in the marine environment can further limit the utility and application of these sensors. Further development work is needed; however, the need now is for field deployments, validation and inter‐calibration between sensors and other analytical measurement techniques.

Originality/value

This paper provides up‐to‐date information on in situ technologies that are available, either at the laboratory and prototype stages or commercially, and are suitable for deployment in the marine environment. Applications of these sensing systems are discussed together with their associated advantages and disadvantages over other existing water monitoring methods.

Details

Sensor Review, vol. 32 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 237