Search results

1 – 10 of 259
Open Access
Article
Publication date: 2 January 2018

Jianfeng Zhao, Bodong Liang and Qiuxia Chen

The successful and commercial use of self-driving/driverless/unmanned/automated car will make human life easier. The paper aims to discuss this issue.

67693

Abstract

Purpose

The successful and commercial use of self-driving/driverless/unmanned/automated car will make human life easier. The paper aims to discuss this issue.

Design/methodology/approach

This paper reviews the key technology of a self-driving car. In this paper, the four key technologies in self-driving car, namely, car navigation system, path planning, environment perception and car control, are addressed and surveyed. The main research institutions and groups in different countries are summarized. Finally, the debates of self-driving car are discussed and the development trend of self-driving car is predicted.

Findings

This paper analyzes the key technology of self-driving car and illuminates the state-of-art of the self-driving car.

Originality/value

The main research contents and key technology have been introduced. The research progress as well as the research institution has been summarized.

Details

International Journal of Intelligent Unmanned Systems, vol. 6 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Open Access
Article
Publication date: 25 September 2018

Ruwini Edirisinghe

The future construction site will be pervasive, context aware and embedded with intelligence. The purpose of this paper is to explore and define the concept of the digital skin of…

23279

Abstract

Purpose

The future construction site will be pervasive, context aware and embedded with intelligence. The purpose of this paper is to explore and define the concept of the digital skin of the future smart construction site.

Design/methodology/approach

The paper provides a systematic and hierarchical classification of 114 articles from both industry and academia on the digital skin concept and evaluates them. The hierarchical classification is based on application areas relevant to construction, such as augmented reality, building information model-based visualisation, labour tracking, supply chain tracking, safety management, mobile equipment tracking and schedule and progress monitoring. Evaluations of the research papers were conducted based on three pillars: validation of technological feasibility, onsite application and user acceptance testing.

Findings

Technologies learned about in the literature review enabled the envisaging of the pervasive construction site of the future. The paper presents scenarios for the future context-aware construction site, including the construction worker, construction procurement management and future real-time safety management systems.

Originality/value

Based on the gaps identified by the review in the body of knowledge and on a broader analysis of technology diffusion, the paper highlights the research challenges to be overcome in the advent of digital skin. The paper recommends that researchers follow a coherent process for smart technology design, development and implementation in order to achieve this vision for the construction industry.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 22 August 2023

Mahesh Babu Purushothaman and Kasun Moolika Gedara

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and…

1307

Abstract

Purpose

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and embedded cameras) that aids in manual lifting human pose deduction, analysis and training in the construction sector.

Design/methodology/approach

Using a pragmatic approach combined with the literature review, this study discusses the SVBM. The research method includes a literature review followed by a pragmatic approach and lab validation of the acquired data. Adopting the practical approach, the authors of this article developed an SVBM, an AI program to correlate computer vision (recorded and live videos using mobile and embedded cameras).

Findings

Results show that SVBM observes the relevant events without additional attachments to the human body and compares them with the standard axis to identify abnormal postures using mobile and other cameras. Angles of critical nodal points are projected through human pose detection and calculating body part movement angles using a novel software program and mobile application. The SVBM demonstrates its ability to data capture and analysis in real-time and offline using videos recorded earlier and is validated for program coding and results repeatability.

Research limitations/implications

Literature review methodology limitations include not keeping in phase with the most updated field knowledge. This limitation is offset by choosing the range for literature review within the last two decades. This literature review may not have captured all published articles because the restriction of database access and search was based only on English. Also, the authors may have omitted fruitful articles hiding in a less popular journal. These limitations are acknowledged. The critical limitation is that the trust, privacy and psychological issues are not addressed in SVBM, which is recognised. However, the benefits of SVBM naturally offset this limitation to being adopted practically.

Practical implications

The theoretical and practical implications include customised and individualistic prediction and preventing most posture-related hazardous behaviours before a critical injury happens. The theoretical implications include mimicking the human pose and lab-based analysis without attaching sensors that naturally alter the working poses. SVBM would help researchers develop more accurate data and theoretical models close to actuals.

Social implications

By using SVBM, the possibility of early deduction and prevention of musculoskeletal disorders is high; the social implications include the benefits of being a healthier society and health concerned construction sector.

Originality/value

Human pose detection, especially joint angle calculation in a work environment, is crucial to early deduction of muscoloskeletal disorders. Conventional digital technology-based methods to detect pose flaws focus on location information from wearables and laboratory-controlled motion sensors. For the first time, this paper presents novel computer vision (recorded and live videos using mobile and embedded cameras) and digital image-related deep learning methods without attachment to the human body for manual handling pose deduction and analysis of angles, neckline and torso line in an actual construction work environment.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 30 April 2021

Sepehr Alizadehsalehi and Ibrahim Yitmen

The purpose of this research is to develop a generic framework of a digital twin (DT)-based automated construction progress monitoring through reality capture to extended reality…

8962

Abstract

Purpose

The purpose of this research is to develop a generic framework of a digital twin (DT)-based automated construction progress monitoring through reality capture to extended reality (RC-to-XR).

Design/methodology/approach

IDEF0 data modeling method has been designed to establish an integration of reality capturing technologies by using BIM, DTs and XR for automated construction progress monitoring. Structural equation modeling (SEM) method has been used to test the proposed hypotheses and develop the skill model to examine the reliability, validity and contribution of the framework to understand the DRX model's effectiveness if implemented in real practice.

Findings

The research findings validate the positive impact and importance of utilizing technology integration in a logical framework such as DRX, which provides trustable, real-time, transparent and digital construction progress monitoring.

Practical implications

DRX system captures accurate, real-time and comprehensive data at construction stage, analyses data and information precisely and quickly, visualizes information and reports in a real scale environment, facilitates information flows and communication, learns from itself, historical data and accessible online data to predict future actions, provides semantic and digitalize construction information with analytical capabilities and optimizes decision-making process.

Originality/value

The research presents a framework of an automated construction progress monitoring system that integrates BIM, various reality capturing technologies, DT and XR technologies (VR, AR and MR), arraying the steps on how these technologies work collaboratively to create, capture, generate, analyze, manage and visualize construction progress data, information and reports.

Details

Smart and Sustainable Built Environment, vol. 12 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 28 March 2024

Hans Voordijk, Seirgei Miller and Faridaddin Vahdatikhaki

Using real-time support systems may help operators in road construction to improve paving and compaction operations. Nowadays, these systems transform from descriptive to…

Abstract

Purpose

Using real-time support systems may help operators in road construction to improve paving and compaction operations. Nowadays, these systems transform from descriptive to prescriptive systems. Prescriptive or operator guidance systems propose operators actionable compaction strategies and guidance, based on the data collected. It is investigated how these systems mediate the perceptions and actions of operators in road pavement practice.

Design/methodology/approach

A case study is conducted on the specific application of an operator guidance system in a road pavement project. In this case study, comprehensive information is presented regarding the process of converting input in the form of data from cameras and sensors into useful output. The ways in which the operator guidance systems translate data into actionable guidance for operators are analyzed from the technological mediation perspective.

Findings

Operator guidance systems mediate actions of operators physically, cognitively and contextually. These different types of action mediation are related to preconditions for successful implementation and use of these systems. Coercive interventions only succeed if there is widespread agreement among the operators. Persuasive interventions are most effective when collective and individual interests align. Contextual influence relates to designs of the operator guidance systems that determine human-technology interactions when using them.

Originality/value

This is the first study that analyzes the functioning of an operator guidance system using the technological mediation approach. It adds a new perspective on the interaction between this system and its users in road pavement practice.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 1 October 2019

Kay Rogage, Adrian Clear, Zaid Alwan, Tom Lawrence and Graham Kelly

Buildings and their use is a complex process from design to occupation. Buildings produce huge volumes of data such as building information modelling (BIM), sensor (e.g. from…

4396

Abstract

Purpose

Buildings and their use is a complex process from design to occupation. Buildings produce huge volumes of data such as building information modelling (BIM), sensor (e.g. from building management systems), occupant and building maintenance data. These data can be spread across multiple disconnected systems in numerous formats, making their combined analysis difficult. The purpose of this paper is to bring these sources of data together, to provide a more complete account of a building and, consequently, a more comprehensive basis for understanding and managing its performance.

Design/methodology/approach

Building data from a sample of newly constructed housing units were analysed, several properties were identified for the study and sensors deployed. A sensor agnostic platform for visualising real-time building performance data was developed.

Findings

Data sources from both sensor data and qualitative questionnaire were analysed and a matrix of elements affecting building performance in areas such as energy use, comfort use, integration with technology was presented. In addition, a prototype sensor visualisation platform was designed to connect in-use performance data to BIM.

Originality/value

This work presents initial findings from a post occupancy evaluation utilising sensor data. The work attempts to address the issues of BIM in-use scenarios for housing sector. A prototype was developed which can be fully developed and replicated to wider housing projects. The findings can better address how indoor thermal comfort parameters can be used to improve housing stock and even address elements such as machine learning for better buildings.

Details

International Journal of Building Pathology and Adaptation, vol. 38 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 18 January 2016

Hui-Feng Wang, Gui-ping Wang, Xiao-Yan Wang, Chi Ruan and Shi-qin Chen

This study aims to consider active vision in low-visibility environments to reveal the factors of optical properties which affect visibility and to explore a method of obtaining…

1468

Abstract

Purpose

This study aims to consider active vision in low-visibility environments to reveal the factors of optical properties which affect visibility and to explore a method of obtaining different depths of fields by multimode imaging.Bad weather affects the driver’s visual range tremendously and thus has a serious impact on transport safety.

Design/methodology/approach

A new mechanism and a core algorithm for obtaining an excellent large field-depth image which can be used to aid safe driving is designed and implemented. In this mechanism, atmospheric extinction principle and field expansion system are researched as the basis, followed by image registration and fusion algorithm for the Infrared Extended Depth of Field (IR-EDOF) sensor.

Findings

The experimental results show that the idea we propose can work well to expand the field depth in a low-visibility road environment as a new aided safety-driving sensor.

Originality/value

The paper presents a new kind of active optical extension, as well as enhanced driving aids, which is an effective solution to the problem of weakening of visual ability. It is a practical engineering sensor scheme for safety driving in low-visibility road environments.

Details

Sensor Review, vol. 36 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 5 January 2022

Alex Mason, Dmytro Romanov, L. Eduardo Cordova-Lopez, Steven Ross and Olga Korostynska

Modern meat processing requires automation and robotisation to remain sustainable and adapt to future challenges, including those brought by global infection events. Automation of…

2274

Abstract

Purpose

Modern meat processing requires automation and robotisation to remain sustainable and adapt to future challenges, including those brought by global infection events. Automation of all or many processes is seen as the way forward, with robots performing various tasks instead of people. Meat cutting is one of these tasks. Smart novel solutions, including smart knives, are required, with the smart knife being able to analyse and predict the meat it cuts. This paper aims to review technologies with the potential to be used as a so-called “smart knife” The criteria for a smart knife are also defined.

Design/methodology/approach

This paper reviews various technologies that can be used, either alone or in combination, for developing a future smart knife for robotic meat cutting, with possibilities for their integration into automatic meat processing. Optical methods, Near Infra-Red spectroscopy, electrical impedance spectroscopy, force sensing and electromagnetic wave-based sensing approaches are assessed against the defined criteria for a smart knife.

Findings

Optical methods are well established for meat quality and composition characterisation but lack speed and robustness for real-time use as part of a cutting tool. Combining these methods with artificial intelligence (AI) could improve the performance. Methods, such as electrical impedance measurements and rapid evaporative ionisation mass spectrometry, are invasive and not suitable in meat processing since they damage the meat. One attractive option is using athermal electromagnetic waves, although no commercially developed solutions exist that are readily adaptable to produce a smart knife with proven functionality, robustness or reliability.

Originality/value

This paper critically reviews and assesses a range of sensing technologies with very specific requirements: to be compatible with robotic assisted cutting in the meat industry. The concept of a smart knife that can benefit from these technologies to provide a real-time “feeling feedback” to the robot is at the centre of the discussion.

Details

Sensor Review, vol. 42 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 18 September 2019

Omid Maghazei and Torbjørn Netland

Although the industrial application of drones is increasing quickly, there is a scarcity of applications in manufacturing. The purpose of this paper is to explore current and…

19982

Abstract

Purpose

Although the industrial application of drones is increasing quickly, there is a scarcity of applications in manufacturing. The purpose of this paper is to explore current and potential applications of drones in manufacturing, examine the opportunities and challenges involved and propose a research agenda.

Design/methodology/approach

The paper reports the result of an extensive qualitative investigation into an emerging phenomenon. The authors build on the literature on advanced manufacturing technologies. Data collected through in-depth interviews with 66 drone experts from 56 drone vendors and related services are analyzed using an inductive research design.

Findings

Drones represent a promising AMT that is expected to be used in several applications in manufacturing in the next few years. This paper proposes a typology of drone applications in manufacturing, explains opportunities and challenges involved and develops a research agenda. The typology categorizes four types of applications based on the drones’ capabilities to “see,” “sense,” “move” and “transform.”

Research limitations/implications

The proposed research agenda offers a guide for future research on drones in manufacturing. There are many research opportunities in the domains of industrial engineering, technology development and behavioral operations.

Practical implications

Guidance on current and promising potentials of drones in manufacturing is provided to practitioners. Particularly interesting applications are those that help manufacturers “see” and “sense” data in their factories. Applications that “move” or “transform” objects are scarcer, and they make sense only in special cases in very large manufacturing facilities.

Originality/value

The application of drones in manufacturing is in its infancy, but is foreseen to grow rapidly over the next decade. This paper presents the first academically rigorous analysis of potential applications of drones in manufacturing. An original and theory-informed typology for drone applications is a timely contribution to the nascent literature. The research agenda presented assists the establishment of a new stream of literature on drones in manufacturing.

Details

Journal of Manufacturing Technology Management, vol. 31 no. 6
Type: Research Article
ISSN: 1741-038X

Keywords

1 – 10 of 259