Search results

1 – 10 of over 5000
Article
Publication date: 5 December 2023

Shahe Liang, Zhiqiang Zhang and Aiqun Li

A new type of variable damping viscous damper is developed to meet the settings of different damping parameter values at different working stages. Its main principle and design…

Abstract

Purpose

A new type of variable damping viscous damper is developed to meet the settings of different damping parameter values at different working stages. Its main principle and design structure are introduced, and the two-stage and multi-stage controllable damping methods are proposed.

Design/methodology/approach

The theoretical calculation formulas of the damping force of power-law fluid variable damping viscous damper at elongated holes are derived, aiming to provide a theoretical basis for the development and application of variable damping viscous dampers. For the newly developed variable damping viscous damper, the dynamic equations for the seismic reduction system with variable damping viscous dampers under a multi-degree-of-freedom system are established. A feasible calculation and analysis method is proposed to derive the solution process of time history analysis. At the same time, a program is also developed using Matlab. The dynamic full-scale test of a two-stage variable damping viscous damper was conducted, demonstrating that the hysteresis curve is complete and the working condition is stable.

Findings

Through the calculation and analysis of examples, the results show that the seismic reduction effect of high and flexible buildings using the seismic reduction system with variable damping viscous dampers is significant. The program developed is used to analyze the seismic response of a broadcasting tower using a variable damping TMD system under large earthquakes. The results indicate that the installation of variable damping viscous dampers can effectively control the maximum inter-story displacement response of TMD water tanks and can effectively consume seismic energy.

Originality/value

This method can provide a guarantee for the safe and effective operation of TMD in wind and vibration control.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 30 July 2020

Xu Li, Jun Li, Xiaoyi Zhang, Jianfeng Gao and Chao Zhang

Viscous dampers are commonly used in large span cable-stayed bridges to mitigate seismic effects and have achieved great success.

Abstract

Purpose

Viscous dampers are commonly used in large span cable-stayed bridges to mitigate seismic effects and have achieved great success.

Design/methodology/approach

However, the nonlinear analysis on damper parameters is usually computational intensive and nonobjective. To address these issues, this paper proposes a simplified method to determine the viscous damper parameters for double-tower cable-stayed bridges. An empirical formula of the equivalent damping ratio of viscous dampers is established through decoupling nonclassical damping structures and linearization of nonlinear viscous dampers. Shaking table tests are conducted to verify the feasibility of the proposed method. Moreover, this simplified method has been proved in long-span cable-stayed bridges.

Findings

The feasibility of this method is verified by the simplified model shaking table test. This simplified method for determining the parameters of viscous dampers is verified in cable-stayed bridges with different spans.

Originality/value

This simplified method has been validated in cable-stayed bridges with various spans.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 19 June 2009

Oğuz Demiryürek and Erdem Koç

The purpose of this paper is to investigate the design dimensions in pressure or metering region of a single‐screw extruder by determining viscous power loss. The paper is the…

Abstract

Purpose

The purpose of this paper is to investigate the design dimensions in pressure or metering region of a single‐screw extruder by determining viscous power loss. The paper is the second part of a series.

Design/methodology/approach

Viscous power loss formed in the extruder screw channel and the radial clearance is determined and evaluated in terms of non‐dimensional parameters in order to obtain a theoretical model.

Findings

The theoretical model developed is capable of estimating the viscous power loss in the extruder metering region. With the model developed, extruder geometry and viscous power loss under different operating conditions can be predicted.

Originality/value

This paper offers a quick and easy opportunity to examine the viscous power loss in the extruder.

Details

Industrial Lubrication and Tribology, vol. 61 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 May 2009

Joaquín Zueco

The unsteady natural convection flow of a viscous dissipative fluid along a semi‐infinite vertical plate subjected to periodic surface temperature oscillation is investigated.

Abstract

Purpose

The unsteady natural convection flow of a viscous dissipative fluid along a semi‐infinite vertical plate subjected to periodic surface temperature oscillation is investigated.

Design/methodology/approach

An electrical‐network model based on the Network Simulation Method is developed to solve the governing equations. The accuracy and effectiveness of the method are demonstrated.

Findings

The increasing of the viscous dissipation and the decreasing in the Prandtl number lead to a decrease in Nusselt number and an increase in the local skin‐friction. Also, it is found that the oscillations of the Nusselt number and of the local skin‐friction depend on the frequency and amplitude of the oscillating surface temperature. For Pr = 1,000 and ε = 0.005 (realistic case) the effect of the viscous dissipation is appreciable at large distances from the leading edge.

Research limitations/implications

The inclusion of viscous dissipation in the energy equation, except of the theoretical interest, has applications in very special cases, for example, gases at very low temperature and also for high Prandtl number liquids.

Originality/value

The influence of the non‐uniformity of wall temperature on the heat transfer by natural convection along of the plate together with the viscous dissipation of the fluid are analysed by means of a new numerical technique based on the electrical analogy.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1992

TEJWANT SINGH

The theoretical derivation of the start‐up laminar flow of incompressible viscous fluid in a long pipe as suggested by Szymanski, could not be verified experimentally. This leads…

Abstract

The theoretical derivation of the start‐up laminar flow of incompressible viscous fluid in a long pipe as suggested by Szymanski, could not be verified experimentally. This leads to the checking of assumption of constant pressure gradient across the ends of the pipe, on the basis of which the theoretical development was made. Recently, the problem was again investigated for viscous fluid by Otis. In the present paper, the laminar start‐up flow of elastico‐viscous fluid in a pipe, without assuming constant pressure gradient across its ends, has been investigated. The non‐linear governing equations are solved numerically and the effects of start‐up flow parameters and elastico‐viscous parameter on the velocity distribution have been studied.

Details

Engineering Computations, vol. 9 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 September 2018

Don Liu, Hui-Li Han and Yong-Lai Zheng

This paper aims to present a high-order algorithm implemented with the modal spectral element method and simulations of three-dimensional thermal convective flows by using the…

Abstract

Purpose

This paper aims to present a high-order algorithm implemented with the modal spectral element method and simulations of three-dimensional thermal convective flows by using the full viscous dissipation function in the energy equation. Three benchmark problems were solved to validate the algorithm with exact or theoretical solutions. The heated rotating sphere at different temperatures inside a cold planar Poiseuille flow was simulated parametrically at varied angular velocities with positive and negative rotations.

Design/methodology/approach

The fourth-order stiffly stable schemes were implemented and tested for time integration. To provide the hp-refinement and spatial resolution enhancement, a modal spectral element method using hierarchical basis functions was used to solve governing equations in a three-dimensional space.

Findings

It was found that the direction of rotation of the heated sphere has totally different effects on drag, lateral force and torque evaluated on surfaces of the sphere and walls. It was further concluded that the angular velocity of the heated sphere has more influence on the wall normal velocity gradient than on the wall normal temperature gradients and therefore, more influence on the viscous dissipation than on the thermal dissipation.

Research limitations/implications

This paper concerns incompressible fluid flow at constant properties with up to medium temperature variations in the absence of thermal radiation and ignoring the pressure work.

Practical implications

This paper contributes a viable high-order algorithm in time and space for modeling convective heat transfer involving an internal heated rotating sphere with the effect of viscous heating.

Social implications

Results of this paper could provide reference for related topics such as enhanced heat transfer forced convection involving rotating spheres and viscous thermal effect.

Originality/value

The merits include resolving viscous dissipation and thermal diffusion in stationary and rotating boundary layers with both h- and p-type refinements, visualizing the viscous heating effect with the full viscous dissipation function in the energy equation and modeling the forced advection around a rotating sphere with varied positive and negative angular velocities subject to a shear flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 September 2017

Fangwei Xie, Diancheng Wu, Yaowen Tong, Bing Zhang and Jie Zhu

The purpose of this paper is to study the influence of structural parameters of oil groove (such as central angle number, depth and so on) on pressure, flow, load capacity and…

Abstract

Purpose

The purpose of this paper is to study the influence of structural parameters of oil groove (such as central angle number, depth and so on) on pressure, flow, load capacity and transmitted torque between friction pairs of hydro-viscous clutch.

Design/methodology/approach

According to the working process of friction pairs of hydro-viscous clutch, mathematical models of hydrodynamic load capacity and torque transmitted by the oil film were built based on viscosity-temperature property. Then analytical solutions of pressure, flow, load capacity and transmitted torque were obtained; effects of central angle of oil groove zone and friction contact zone, oil film thickness, number of oil grooves on pressure, flow, load capacity and torque were studied theoretically.

Findings

The research found that the central angle of oil groove zone, number of oil grooves and oil groove depth have similar effects on flow, which means that with the increase of central angle, number or depth of oil grooves, the flow also increases; pressure in friction contact zone and oil groove zone drops along radial direction, whereas its value in oil groove zone is higher. With the increase of the central angle of oil groove zone, pressure in friction contact zone and friction contact zone rises, and the load capacity increases, whereas the transmitted torque drops. Number of oil grooves has little effect on load capacity. When the oil film thickness increases, its flow increases accordingly, whereas the pressure, load capacity and transmitted torque drops. Meanwhile, the transmitted torque decreases with the increase of number of oil grooves, whereas the oil groove depth nearly has no effects on transmitted torque.

Originality/value

In this paper, mathematical models of hydrodynamic load capacity and torque transmitted by oil film were built based on viscosity-temperature property in the working process of hydro-viscous clutch, and their analytical solutions were obtained; effects of structural parameters of oil groove on transmission characteristics of hydro-viscous clutch based on viscosity-temperature property were revealed. The research results are of great value to the theory development of hydro-viscous drive technology, the design of high-power hydro-viscous clutch and relative control strategy.

Details

Industrial Lubrication and Tribology, vol. 69 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 September 2005

M.J. Chern, A.G.L. Borthwick and R. Eatock Taylor

The research is directed at development of an efficient and accurate technique for modelling incompressible free surface flows in which viscous effects may not be neglected. The…

1093

Abstract

Purpose

The research is directed at development of an efficient and accurate technique for modelling incompressible free surface flows in which viscous effects may not be neglected. The paper describes the methodology, and gives illustrative results for simple geometries.

Design/methodology/approach

The pseudospectral matrix element method of discretisation is selected as the basis for the CFD technique adopted, because of its high spectral accuracy. It is implemented as a means of solving the Navier‐Stokes equations coupled with the modified compressibility method.

Findings

The viscous solver has been validated for the benchmark cases of uniform flow past a cylinder at a Reynolds number of 40, and 2D cavity flows. Results for sloshing of a viscous fluid in a tank have been successfully compared with those from a linearised analytical solution. Application of the method is illustrated by the results for the interaction of an impulsive wave with a surface piercing circular cylinder in a cylindrical tank.

Research limitations/implications

The paper demonstrates the viability of the approach adopted. The limitation of small amplitude waves should be tackled in future work.

Practical implications

The results will have particular significance in the context of validating computations from more complex schemes applicable to arbitrary geometries.

Originality/value

The new methodology and results are of interest to the community of those developing numerical models of flow past marine structures.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 June 2019

Tomasz Janusz Teleszewski

The purpose of this paper is to apply the boundary element method (BEM) to Stokes flow between eccentric rotating cylinders, considering the case when viscous dissipation plays a…

Abstract

Purpose

The purpose of this paper is to apply the boundary element method (BEM) to Stokes flow between eccentric rotating cylinders, considering the case when viscous dissipation plays a significant role and determining the Nusselt number as a function of cylinder geometry parameters.

Design/methodology/approach

The problem is described by the equation of motion of Stokes flow and an energy equation with a viscous dissipation term. First, the velocity field and the viscous dissipation term were determined from the momentum equation. The determined dissipation of energy and the constant temperature on the cylinder walls are the conditions for the energy equation, from which the temperature distribution and the heat flux at the boundary of the cylinders are determined. Numerical calculations were performed using the author’s own computer program based on BEM. Verification of the model was carried out by comparing the temperature determined by the BEM with the known theoretical solution for the temperature distribution between two rotating concentric cylinders.

Findings

As the ratio of the inner cylinder diameter to the outer cylinder diameter (r1/r2) increases, the Nusselt number increases. The angle of inclination of the function of the Nusselt number versus r1/r2 increases as the distance between the centers of the inner and outer cylinders increases.

Originality/value

The computational results may be used for the design of slide bearings and viscometers for viscosity testing of liquids with high viscosity where viscous dissipation is important. In the work, new integral kernels were determined for BEM needed to determine the viscous dissipation component.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 June 2020

Paragmoni Kalita, Anoop K. Dass and Jongki Hazarika

The flux vector splitting (FVS) schemes are known for their higher resistance to shock instabilities and carbuncle phenomena in high-speed flow computations, which are generally…

Abstract

Purpose

The flux vector splitting (FVS) schemes are known for their higher resistance to shock instabilities and carbuncle phenomena in high-speed flow computations, which are generally accompanied by relatively large numerical diffusion. However, it is desirable to control the numerical diffusion of FVS schemes inside the boundary layer for improved accuracy in viscous flow computations. This study aims to develop a new methodology for controlling the numerical diffusion of FVS schemes for viscous flow computations with the help of a recently developed boundary layer sensor.

Design/methodology/approach

The governing equations are solved using a cell-centered finite volume approach and Euler time integration. The gradients in the viscous fluxes are evaluated by applying the Green’s theorem. For the inviscid fluxes, a new approach is introduced, where the original upwind formulation of an FVS scheme is first cast into an equivalent central discretization along with a numerical diffusion term. Subsequently, the numerical diffusion is scaled down by using a novel scaling function that operates based on a boundary layer sensor. The effectiveness of the approach is demonstrated by applying the same on van Leer’s FVS and AUSM schemes. The resulting schemes are named as Diffusion-Regulated van Leer’s FVS-Viscous (DRvLFV) and Diffusion-Regulated AUSM-Viscous (DRAUSMV) schemes.

Findings

The numerical tests show that the DRvLFV scheme shows significant improvement over its parent scheme in resolving the skin friction and wall heat flux profiles. The DRAUSMV scheme is also found marginally more accurate than its parent scheme. However, stability requirements limit the scaling down of only the numerical diffusion term corresponding to the acoustic part of the AUSM scheme.

Originality/value

To the best of the authors’ knowledge, this is the first successful attempt to regulate the numerical diffusion of FVS schemes inside boundary layers by applying a novel scaling function to their artificial viscosity forms. The new methodology can reduce the erroneous smearing of boundary layers by FVS schemes in high-speed flow applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 5000