Search results

1 – 10 of 23
Article
Publication date: 18 April 2024

Amanda Norazman, Zulhanafi Paiman, Syahrullail Samion, Muhammad Noor Afiq Witri Muhammad Yazid and Zuraidah Rasep

The purpose of this paper is to investigate the performance of bio-based lubricants (BBL), namely, palm mid-olein (PMO) enriched with an antioxidant agent…

11

Abstract

Purpose

The purpose of this paper is to investigate the performance of bio-based lubricants (BBL), namely, palm mid-olein (PMO) enriched with an antioxidant agent, tertiary-butylhydroquinone (TBHQ) and a viscosity improver, ethylene-vinyl acetate (EVA), in journal bearing (JB) applications.

Design/methodology/approach

Samples of the BBL were prepared by blending it with TBHQ and EVA at various blending ratios. The oxidative stability (OS) and viscosity of the BBL samples were examined using differential scanning calorimetry and a viscometer, respectively. Meanwhile, their performance in JB applications was evaluated through the use of a JB test rig with a 0.5 length-to-diameter ratio at various operating conditions.

Findings

It was found that the combination of PMO + TBHQ + EVA demonstrated a superior oil film pressure and load-carrying capacity, resulting in a reduced friction coefficient and a smaller attitude angle compared to the use of only PMO or VG68. However, it was observed that the addition of TBHQ and EVA to the PMO did not have a significant impact on the minimum oil film thickness.

Practical implications

The results would be quite useful for researchers generally and designers of bearings in particular.

Originality/value

This study used PMO as the base stock, and its compatibility with TBHQ and EVA was investigated in terms of its OS and viscosity. The performance of this treated BBL was evaluated in a hydrodynamic JB.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0363/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 April 2024

Manisha Malik, Devyani Tomar, Narpinder Singh and B.S. Khatkar

This study aims to provide a salt ready-mix to instant fried noodles manufacturers.

Abstract

Purpose

This study aims to provide a salt ready-mix to instant fried noodles manufacturers.

Design/methodology/approach

Response surface methodology was used to get optimized salt ready-mix based on carbonate salt, disodium phosphate, tripotassium phospahte, sodium hexametaphosphate and sodium chloride. Peak viscosity of flour and yellowness, cooking loss and hardness of noodles were considered as response factors for finding optimized salt formulation.

Findings

The results showed that salts have an important role in governing quality of noodles. Optimum levels of five independent variables of salts, namely, carbonate salt (1:1 mixture of sodium to potassium carbonate), disodium phosphate, sodium hexametaphosphate, tripotassium phosphate and sodium chloride were 0.64%, 0.29%, 0.25%, 0.46% and 0.78% on flour weight basis, respectively.

Originality/value

To the best of the authors’ knowledge, this is the first study to assess the effect of different combinations of different salts on the quality of noodles. These findings will also benefit noodle manufacturers, assisting in production of superior quality noodles.

Details

Nutrition & Food Science , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 7 February 2023

Selinay Gumus, Kaan Aksoy and Ayse Aytac

This study aims to investigate the effects of nano or inorganic fillers on unsaturated polyester’s (UPE) thermal, mechanical, and physical properties. UPE reinforced with…

Abstract

Purpose

This study aims to investigate the effects of nano or inorganic fillers on unsaturated polyester’s (UPE) thermal, mechanical, and physical properties. UPE reinforced with nanoparticles shows better properties than the pure polymer itself. Nano or inorganic fillers are used in the polymeric matrix to improve thermal, mechanical and physical properties.

Design/methodology/approach

To improve thermal, mechanical and physical properties, UPE resin was modified with silica (S), boron nitride (BN) and S/BN hybrid nanoparticles at different ratios. Viscosity and solids content measurement, Fourier transform infrared spectroscopy, contact angle measurement, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and thermal conductivity coefficient tests were performed on the samples.

Findings

In the SEM analysis, the UPE sample showed a smooth appearance, while all samples containing additives showed phase separation and overall heterogeneous distribution. TGA results demonstrated that the thermal stability of the resin increased in the presence of S and BN additives. According to the results, it was observed that the presence of S and BN additives in the UPE resin and the use of certain ratios improved the resin properties.

Originality/value

As a result of the literature search, to the best of the authors’ knowledge, no study was found in which BN nanoparticles were included in the UPE resin together with S.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 April 2024

Qingyang Wang, Weifeng Wu, Ping Zhang, Chengqiang Guo and Yifan Yang

To guide the stable radius clearance choice of water-lubricated bearings for single screw compressors, this paper aims to analyze the effects of turbulence and cavitation on…

Abstract

Purpose

To guide the stable radius clearance choice of water-lubricated bearings for single screw compressors, this paper aims to analyze the effects of turbulence and cavitation on bearing performance under two conditions of specified external load and radius clearance.

Design/methodology/approach

A modified Reynolds equation considering turbulence and cavitation is adopted, based on the Jakobsson–Floberg–Olsson boundary condition, Ng–Pan model and turbulent factors. The equation is solved using the finite difference method and successive over-relaxation method to investigate the bearing performance.

Findings

The turbulent effect can increase the hydrodynamic pressure and cavitation. In addition, the turbulent effect can lead to an increase in the equilibrium radius clearance. The turbulent region exhibits a higher load capacity and cavitation rate. However, the increased cavitation negatively impacts the frictional coefficient and end flow rate. The impact of turbulence increases as the radius clearance decreases. As the rotating speed increases, the turbulence effect has a greater impact on the bearing characteristics.

Originality/value

The research can provide theoretical support for the design of water-lubricated journal bearings used in high-speed water-lubricated single screw compressors.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0029/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 9 February 2024

Martin Novák, Berenika Hausnerova, Vladimir Pata and Daniel Sanetrnik

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass…

Abstract

Purpose

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass production implemented using PIM. Thus, the surface properties and mechanical performance of parts produced using powder/polymer binder feedstocks [material extrusion (MEX) and PIM] were investigated and compared with powder manufacturing based on direct metal laser sintering (DMLS).

Design/methodology/approach

PIM parts were manufactured from 17-4PH stainless steel PIM-quality powder and powder intended for powder bed fusion compounded with a recently developed environmentally benign binder. Rheological data obtained at the relevant temperatures were used to set up the process parameters of injection molding. The tensile and yield strengths as well as the strain at break were determined for PIM sintered parts and compared to those produced using MEX and DMLS. Surface properties were evaluated through a 3D scanner and analyzed with advanced statistical tools.

Findings

Advanced statistical analyses of the surface properties showed the proximity between the surfaces created via PIM and MEX. The tensile and yield strengths, as well as the strain at break, suggested that DMLS provides sintered samples with the highest strength and ductility; however, PIM parts made from environmentally benign feedstock may successfully compete with this manufacturing route.

Originality/value

This study addresses the issues connected to the merging of two environmentally efficient processing routes. The literature survey included has shown that there is so far no study comparing AM and PIM techniques systematically on the fixed part shape and dimensions using advanced statistical tools to derive the proximity of the investigated processing routes.

Article
Publication date: 19 April 2024

Hoda Sabry Sabry Othman, Salwa H. El-Sabbagh and Galal A. Nawwar

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when…

Abstract

Purpose

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when incorporated into the nonpolar ethylene propylene diene (EPDFM) rubber matrix, focusing on its reinforcing and antioxidant effect on the resulting EPDM composites.

Design/methodology/approach

The structure of the prepared EPDM composites was confirmed by Fourier-transform infrared spectroscopy, and the dispersion of the additive fillers and antioxidants in the EPDM matrix was investigated using scanning electron microscopy. Also, the rheometric characteristics, mechanical properties, swelling behavior and thermal gravimetric analysis of all the prepared EPDM composites were explored as well.

Findings

Results revealed that the Cu-LSF complex dispersed well in the nonpolar EPDM rubber matrix, in thepresence of coupling system, with enhanced Cu-LSF-rubber interactions and increased cross-linking density, which reflected on the improved rheological and mechanical properties of the resulting EPDM composites. From the various investigations performed in the current study, the authors can suggest 7–11 phr is the optimal effective concentration of Cu-LSF complex loading. Interestingly, EPDM composites containing Cu-LSF complex showed better antiaging performance, thermal stability and fluid resistance, when compared with those containing the commercial antioxidants (2,2,4-trimethyl-1,2-dihydroquinoline and N-isopropyl-N’-phenyl-p-phenylenediamine). These findings are in good agreement with our previous study on polar nitrile butadiene rubber.

Originality/value

The current study suggests the green biomass-derived Cu-LSF complex to be a promising low-cost and environmentally safe alternative filler and antioxidant to the hazardous commercial ones.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 April 2024

Natiq Yaseen Taha Al-Maneehlawi and Akram Jalil Kadhim Shubbar

The purpose of this paper is to investigate the nonsimultaneous impact of three impactors with spherical tip on the response of a low-velocity impact on a beam.

Abstract

Purpose

The purpose of this paper is to investigate the nonsimultaneous impact of three impactors with spherical tip on the response of a low-velocity impact on a beam.

Design/methodology/approach

In this research, the third-order shear deformation theory of the beam with hyperbolic shear-strain function is used. Hamilton’s principle is applied to derive the motion equations. To simulate nonsimultaneous impacts, by using the Hertz nonlinear contact law, the contact of the impactors with different times is simulated. Comparisons with other articles are carried out in the one impactor form.

Findings

In the parametric study, the histories of the contact force and displacement of the beam are investigated in the presence of only one impactor in the center of the beam and also in the presence of three impactors, one in the center of the beam and the other two around the first impactor with a delay. One of the important and noteworthy points is that the presence of two impactors with a delay causes the maximum contact force and contact time to decrease and the maximum displacement of the beam center to increase.

Originality/value

The original point of this paper is what is the difference between the impact response of one projectile and three nonsimultaneous projectiles on the beam.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

36

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 March 2024

Amar Benkhaled, Amina Benkhedda, Braham Benaouda Zouaoui and Soheyb Ribouh

Reducing aircraft fuel consumption has become a paramount research area, focusing on optimizing operational parameters like speed and altitude during the cruise phase. However…

Abstract

Purpose

Reducing aircraft fuel consumption has become a paramount research area, focusing on optimizing operational parameters like speed and altitude during the cruise phase. However, the existing methods for fuel reduction often rely on complex experimental calculations and data extraction from embedded systems, making practical implementation challenging. To address this, this study aims to devise a simple and accessible approach using available information.

Design/methodology/approach

In this paper, a novel analytic method to estimate and optimize fuel consumption for aircraft equipped with jet engines is proposed, with a particular emphasis on speed and altitude parameters. The dynamic variations in weight caused by fuel consumption during flight are also accounted for. The derived fuel consumption equation was rigorously validated by applying it to the Boeing 737–700 and comparing the results against the fuel consumption reference tables provided in the Boeing manual. Remarkably, the equation yielded closely aligned outcomes across various altitudes studied. In the second part of this paper, a pioneering approach is introduced by leveraging the particle swarm optimization algorithm (PSO). This novel application of PSO allows us to explore the equation’s potential in finding the optimal altitude and speed for an actual flight from Algiers to Brussels.

Findings

The results demonstrate that using the main findings of this study, including the innovative equation and the application of PSO, significantly simplifies and expedites the process of determining the ideal parameters, showcasing the practical applicability of the approach.

Research limitations/implications

The suggested methodology stands out for its simplicity and practicality, particularly when compared to alternative approaches, owing to the ready availability of data for utilization. Nevertheless, its applicability is limited in scenarios where zero wind effects are a prevailing factor.

Originality/value

The research opens up new possibilities for fuel-efficient aviation, with a particular focus on the development of a unique fuel consumption equation and the pioneering use of the PSO algorithm for optimizing flight parameters. This study’s accessible approach can pave the way for more environmentally conscious and economical flight operations.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 October 2022

P.C. Sarkar, Ammayappan Lakshmanan and Niranjan Kumar

The purpose of this study is to enhance the functional properties of Hessian fabric through resin finishing. Hessian bags made of lignocellulosic jute fiber are commonly used to…

Abstract

Purpose

The purpose of this study is to enhance the functional properties of Hessian fabric through resin finishing. Hessian bags made of lignocellulosic jute fiber are commonly used to pack, store and transport agro-commodities, including horticultural crops such as rice, potato, onion and wheat. However, because of high water affinity, these bags undergo degradation in properties due to moisture release by the stored commodities themselves. Exposure to natural elements, e.g. rain and dew, also causes moisture absorption in hessian bags. Once the bag gets moistened, degradation of jute bags starts due to microbial attack, leading to loss in tensile strength and change in extensibility, leading to ultimate breakage in warp and weft directions of the fabric.

Design/methodology/approach

To overcome the degradation in the functional properties of hessian fabric due to exposure to moisture and microbial attack, the application of semi-synthetic polymeric materials was carried out.

Findings

Tenacity, bursting strength, puncture resistance, tear strength and breaking load, as well as life cycle of resin-treated jute fabric was found to be better than control jute.

Originality/value

To the best of the authors’ knowledge, no recent reports of resin finishing on jute (hessian) fabric with semi-synthetic resins are presently available, other than coating with rubber.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 23