Search results

1 – 5 of 5
To view the access options for this content please click here
Article
Publication date: 13 March 2007

Vijay Kumar Jadon and Madhvender Singh

Hybrid bearings have found increasing applications in various machines owing to their large number of favorable characteristics like high load carrying capacity, increased…

Abstract

Purpose

Hybrid bearings have found increasing applications in various machines owing to their large number of favorable characteristics like high load carrying capacity, increased minimum fluid film thickness, long life and increased damping making them attractive for various applications such as turbo machinery, machine tool spindles, precision grinder spindles, etc. A careful design of such bearing for optimum performance has always been among the key issues of the researchers. The present work has been carried out to study the effect of bearing geometric parameters on performance of hybrid journal bearing and supply cut‐off behavior has also been studied for the improved performance.

Design/methodology/approach

The generalized Reynold's equation governing the fluid flow in the clearance space between bearing and journal has been solved using finite element method to determine the pressure distribution, subsequently performance of hole‐entry hybrid journal bearing are computed. The journal centre equilibrium position for the given load is computed and the formulation is explained. The geometric parameters include aspect ratio, land width ratio, number of rows and number of holes per row. Further, performance of the bearing is computed with increasing the load, which induces negative pressure or the backpressure at the supply holes subsequently those are plugged to support the higher load.

Findings

The obtained results are presented in graphical form and logical conclusions are drawn and the modified configurations with reduced number of holes are suggested for higher load. It is observed that the bearing configuration with aspect ratio = 1.0 and land width ratio = 0.2 is best for high load support for low power requirement as less lubricant is required to be pumped in the bearing yet it provides sufficient fluid film thickness and lower values of maximum pressure. The load carrying capacity of the bearing can be further increased by plugging the holes on which backpressure is obtained for same bearing configuration. A feedback control with hybrid bearing system will sustain the sudden increase of load by shutting off the supply of the lubricant through supply hole where negative pressure is encountered.

Originality/value

The paper addresses the performance of non recessed hybrid journal bearings with wide range of geometric parameter. The results are quite useful for the bearing designer. The supply cut‐off is another aspect of originality of the paper as it provides the better load support.

Details

Industrial Lubrication and Tribology, vol. 59 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 3 May 2011

Suresh Verma, Vijay Kumar Jadon and K.D. Gupta

The paper seeks to study, theoretically, the performance characteristics of capillary compensated multi‐recessed hydrostatic journal bearings operating with micropolar…

Abstract

Purpose

The paper seeks to study, theoretically, the performance characteristics of capillary compensated multi‐recessed hydrostatic journal bearings operating with micropolar lubricant. The finite element method is used to solve the modified Reynolds' equation governing the micropolar lubricant flow in the clearance space of a hydrostatic journal bearing. The performance characteristics of bearing operating with micropolar lubricant are presented and compared with that of Newtonian lubricant, for a wide range of non‐dimensional load, capillary restrictor design parameter and micropolar parameters.

Design/methodology/approach

The modified Reynolds' equation governing the flow of the micropolar lubricant is solved along with restrictor flow equation by finite element method so as to obtain fluid‐film pressures. The iterative procedure is repeated until the converged solution for the fluid‐film pressure field is obtained.

Findings

A study of four‐pocket hydrostatic journal bearing system capillary compensated and operating with micropolar lubricant is presented. The following conclusions are made from the results presented in this study: at a constant load, pocket pressures and minimum film thickness, stiffness coefficients and, the damping coefficients increase with increase in micropolar effect of lubricant as compared to the Newtonian lubricant; the influence of the micropolar parameters of lubricant is more significant upon the minimum fluid‐film thickness at higher values of load and lower values of restrictor design parameter; the non‐dimensional flow decreases with increase in the micropolar effect of the lubricant a given values of restrictor design parameter and load; and the stiffness coefficient in the direction of load is found to be influenced by the micropolar parameters and more significantly at lower values of restrictor design parameter and load.

Originality/value

Studies of capillary compensated multi‐recess hydrostatic journal bearing operating with micropolar fluid/lubricant are not available in the existing literature to the best of authors' knowledge. Although, such bearing has been studied with Newtonian lubricant and available in open literature. Therefore, this paper is an original piece of work in the area of micropolar lubrication and compensated hydrostatic bearings.

Details

Industrial Lubrication and Tribology, vol. 63 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 7 March 2016

S. Vinodh and Sharath Kumar T.

– The purpose of this paper is to report a study in which creative design concepts have been applied to automotive brake rotor design.

Abstract

Purpose

The purpose of this paper is to report a study in which creative design concepts have been applied to automotive brake rotor design.

Design/methodology/approach

The literature review on creative design concepts and braking system scenario has been carried out. By studying the existing brake rotors and applying creative design concepts, modified rotor designs have been developed.

Findings

The experience gained out of the study indicated that braking efficiency and durability of the braking system can be significantly improved by the adoption of proposed designs.

Research limitations/implications

The research has been carried out for an automotive passenger car. The findings of this research work could be extended to similar models of buses and trucks.

Practical implications

The usage of the proposed designs reduces the driver’s effort in braking and adds significantly to the life of the rotors.

Originality/value

A case study has been reported to indicate the application of creative design concepts for enhancing the efficiency of automotive braking system in cars.

Details

Journal of Engineering, Design and Technology, vol. 14 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

To view the access options for this content please click here
Article
Publication date: 9 August 2013

H.C. Garg and Vijay Kumar

This paper aims to investigate the effect of plugging of holes on the static performance characteristics of a constant flow valve compensated hole‐entry hybrid journal…

Abstract

Purpose

This paper aims to investigate the effect of plugging of holes on the static performance characteristics of a constant flow valve compensated hole‐entry hybrid journal bearing system operating with Newtonian and non‐Newtonian lubricants. The analysis considers the generalized Reynolds equation governing the flow of lubricant having variable viscosity in the clearance space and equation of flow of lubricant through constant flow valve restrictor. The non‐Newtonian lubricant is assumed to follow the power law. The performance characteristics are computed for the two values of power law index (n=1.0 and 0.566). The computed results indicate that the blockage of holes during operation will not be the likely causes for the imminent failure of a well‐designed non‐recessed hole‐entry hybrid journal bearing.

Design/methodology/approach

Finite element method has been used to solve generalized Reynolds equation governing the flow of lubricant having variable viscosity in the clearance space and equation of flow of lubricant through constant flow valve restrictor.

Findings

The computed results indicate that the blockage of holes during operation will not be the likely causes for the imminent failure of a well‐designed non‐recessed hole‐entry hybrid journal bearing. The bearing configuration with plugged holes provides sufficient fluid film thickness and low power requirement as less lubricant is required to be pumped in the bearing.

Originality/value

To the best of the author's knowledge, no study which considers the influence of plugging of holes on the static performance characteristics of a constant flow valve compensated hole‐entry hybrid journal bearing system operating with Newtonian and non‐Newtonian lubricant is yet available in the literature.

Details

Industrial Lubrication and Tribology, vol. 65 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 4 March 2014

H.C. Garg and Vijay Kumar

The changing technological scenario necessitated hybrid journal bearings to operate under severe conditions of heavy load and high speed resulting into temperature rise of…

Abstract

Purpose

The changing technological scenario necessitated hybrid journal bearings to operate under severe conditions of heavy load and high speed resulting into temperature rise of the lubricant fluid-film and bearing surface. To predict the performance of a bearing realistically, theoretical model must consider the combined influence of the rise of temperature and non-Newtonian behavior of the lubricant. The aim of the present paper is to study the effect of viscosity variation due to temperature rise and non-Newtonian behavior of the lubricant on performance of constant flow valve compensated multiple hole-entry hybrid journal bearings.

Design/methodology/approach

Finite element method has been used to solve Reynolds equation along with restrictor flow equation, 3D energy equation and 3D conduction equation using suitable iterative technique. The non-Newtonian lubricant has been assumed to follow cubic shear stress law.

Findings

The thermohydrostatic rheological performances of symmetric and asymmetric hole-entry hybrid journal bearing configurations are studied. The computed results illustrate that variation of viscosity due to rise in temperature and non-Newtonian behavior of the lubricant affects the performance of hole-entry hybrid journal bearing system quite significantly.

Originality/value

In the present work, the influences of the viscosity variation due to temperature rise and non-Newtonian behavior of the lubricant on the performance characteristics of non-recessed hole-entry hybrid journal bearing with symmetric and asymmetric configurations compensated with constant flow valve restrictors have been investigated for generating the design data to be used by bearing designer. The design data computed in the present thesis are a contribution in field of knowledge of bearing design.

Details

Industrial Lubrication and Tribology, vol. 66 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 5 of 5