Search results

1 – 4 of 4
Article
Publication date: 21 March 2023

Ezekiel Olaoluwa Olatunji, Oluseye Adewale Adebimpe and Victor Oluwasina Oladokun

Flood resilience is a critical concept in flood risk management (FRM). Meanwhile, flood resilience measurement has become vital for making the business case for investment in FRM…

Abstract

Purpose

Flood resilience is a critical concept in flood risk management (FRM). Meanwhile, flood resilience measurement has become vital for making the business case for investment in FRM. However, information is sparse on measuring the level of resilience of flood-prone communities in Nigeria. Therefore, this study aims to develop a fuzzy logic-based model for measuring the resilience of flood-prone communities towards achieving the United Nations Sustainable Development Goals (SDGs) 11 and 13.

Design/methodology/approach

This study describes the development of a fuzzy logic-based flood resilience measuring model, drawing on a synthesis of fuzzy logic literature and extant flood resilience. A generalisation of the flood system for a typical Nigerian community was made. It was followed by an identification and characterisation of the variables and parameters of the system based on SDGs 11 and 13. The generated data was transformed into a fuzzy inference system (FIS) using three input community flood resilience dimensions: natural, socio-technical and socio-economic factors (SEF). The model was then validated with primary data obtained from selected flood-prone communities in Ibadan, Southwest Nigeria. Expert opinions were used in rating the input dimensions for the selected communities.

Findings

In spite of various inputs from experts in the same study area (Apete, Ibadan, Nigeria), the resulting FIS generated consistent resilience indices for various natural, socio-technical and SEF. This approach can strengthen flood resilience measurement at the community level.

Originality/value

Although previous attempts have been made to measure flood resilience at the individual property level (Oladokun et al., 2017; Adebimpe et al., 2020), this research focuses on measuring flood resilience at the community level by adapting the fuzzy logic approach. The fuzzy logic-based model can be a tool for flood resilience measurement at the community level. It can also be developed further for regional and national level applications.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 14 no. 4
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 13 July 2020

Oluseye Adewale Adebimpe, David G. Proverbs and Victor Oluwasina Oladokun

Recent changes in climate, rainfall patterns, snow melt and rising sea levels coupled with an increase in urban development have increased the threat of flooding. To curb these…

Abstract

Purpose

Recent changes in climate, rainfall patterns, snow melt and rising sea levels coupled with an increase in urban development have increased the threat of flooding. To curb these threats and mitigate these damages, property-level approaches to improving resilience are now being encouraged as part of an integrated approach to flood risk management. This raises questions such as, what are the flood resilient attributes within individual properties, what is their importance and how can these be quantified. This research sought to develop a quantitative approach for the measurement of property-level flood resilience.

Design/methodology/approach

A synthesis of literature was undertaken to establish the main resilient attributes and their relevant sub-attributes. This process led to the development of a new method, named the Composite Flood Resilient Index (CFRI) to weight the attributes and sub-attributes of flood resilience based on their importance. The approach adopts the use of the fuzzy-analytic hierarchy process (F-AHP) approach to quantify flood resilience.

Findings

The implications of the proposed methodology in determining the flood resilience of individual property, including the potential use in retrofitting activities, and the benefits to a range of stakeholders are considered.

Social implications

The methodology offers the potential to support the measurement of flood resilience of individual properties, allowing the identification and prioritisation of specific interventions to improve the resilience of a property.

Originality/value

Whereas previous attempts to quantify flood resilience have adopted qualitative approaches with some level of subjectivity, this proposed methodology represents an important advancement in developing a scientific and quantitative approach.

Details

International Journal of Building Pathology and Adaptation, vol. 39 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 13 November 2017

Victor Oluwasina Oladokun, David G. Proverbs and Jessica Lamond

Flood resilience is emerging as a major component of an integrated strategic approach to flood risk management. This approach recognizes that some flooding is inevitable and…

Abstract

Purpose

Flood resilience is emerging as a major component of an integrated strategic approach to flood risk management. This approach recognizes that some flooding is inevitable and aligns with the concept of “living with water.” Resilience measurement is a key in making business case for investments in resilient retrofits/adaptations, and could potentially be used to inform the design of new developments in flood prone areas. The literature is, however, sparse on frameworks for measuring flood resilience. The purpose of this paper is to describe the development of a fuzzy logic (FL)-based resilience measuring model, drawing on a synthesis of extant flood resilience and FL literature.

Design/methodology/approach

An abstraction of the flood resilience system followed by identification and characterization of systems’ variables and parameters were carried out. The resulting model was transformed into a fuzzy inference system (FIS) using three input factors: inherent resilience, supportive facilities (SF) and resident capacity.

Findings

The resulting FIS generates resilience index for households with a wide range of techno-economic and socio-environmental features.

Originality/value

It is concluded that the FL-based model provides a veritable tool for the measurement of flood resilience at the level of the individual property, and with the potential to be further developed for larger scale applications, i.e. at the community or regional levels.

Details

International Journal of Building Pathology and Adaptation, vol. 35 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 1 November 2022

Taiwo Adedeji, David G. Proverbs, Hong Xiao and Victor Oluwasina Oladokun

Despite the present focus on improving the resilience of homes to flooding in UK flood risk management policy and strategy, a general measurement framework for determining levels…

Abstract

Purpose

Despite the present focus on improving the resilience of homes to flooding in UK flood risk management policy and strategy, a general measurement framework for determining levels of flood resilience in UK homes does not exist. In light of this, the aim of this study was to develop a means to evaluate the levels of resilience in flood-prone homes from the perspective of homeowners'.

Design/methodology/approach

A quantitative research methodology was employed, with empirical data obtained through a postal survey of homeowners who had experienced flooding. The responses received were then analysed using a combination of statistical techniques including agreement/reliability tests and multiple regression to develop a model of flood resilience.

Findings

A predictive model was developed that allows the resilience of a property to be quantified and measured as perceived by homeowners. The findings indicate that the main factors found to influence the level of flood resilience were: property type (PT), presence of cellar/basement (C/B), property wall type (PWT), property ground floor type (PGFT), kitchen unit type (KU), flood experience (FE), flood source (FS) and flood risk level (FRL).

Practical implications

The resulting model provides unique insights into resilience levels to the benefit of a range of stakeholders including policy makers (such as Defra/Environment Agency), Local Authority flood teams, property professionals, housing associations and homeowners. As a result, homeowners will be in a better position to determine which interventions should be prioritised to ensure better flood protection.

Originality/value

This is the first study of its kind to have rigorously quantified the level of flood resilience for individual homes. This study has quantified the effectiveness of individual resilience measures to derive the first reliable means to measure the overall levels of resilience at the individual property level. This is regarded as a significant contribution to the study of flood risk management through the quantification of resilience within individual UK homes, enabling the prioritisation of interventions and the overall monitoring of resilience.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

1 – 4 of 4